欢迎您访问高中作文网,请分享给你的朋友!

当前位置 : 首页 > 范文大全 > 报告写作范文

遥感技术起源(收集3篇)

来源: 时间:2024-06-24 手机浏览

遥感技术起源范文篇1

【关键词】林业;遥感;森林资源

0引言

遥感(RemoteSensing,RS)是20世纪60年展起来的一门集地学、生物学、航空航天、电磁波传输和图像处理等多学科交叉融合的新兴学科。遥感技术具有周期性观测和大面积覆盖获取地面信息的特点,可以提供一种实时、动态、综合性强的环境资源信息。遥感技术在林业中的应用被称为林业遥感技术,是指通过卫星和飞机对林业资源进行实时动态地监测,形成各种数据和信息,并通过综合分析处理为林业决策和发展提供服务。我国应用林业遥感技术已有二十多年的历史,取得了可喜的成绩,充分展现了遥感技术在林业中的巨大生命力[1]。

1遥感技术在林业中的应用现状

遥感技术在林业中的应用非常广泛,主要包括以下几个方面:森林资源遥感调查、森林火灾遥感监测、森林病虫灾害遥感监测及林业资源遥感动态监测等。遥感技术在空间分辨率和光谱分辨率方面的提高,以及雷达遥感、航空遥感和无人遥感飞机的发展,为林业遥感提供了丰富的信息源,拓宽了林业遥感应用的深度和广度,给森林资源清查和监测工作带来了新的契机,为“数字林业”的顺利推广提供了强大的信息保证[2]。

1.1林业遥感数据源

1.1.1高空间分辨率遥感数据

林业遥感应用的主要数据源是光学遥感数据,如TM和SPOT等。TM数据具有较高的空间分辨率和光谱分辨率,且数据量大、信息丰富、成本较低,一直是林业遥感的主要信息源,但其30m的空间分辨率的应用精度并不令人满意。进行宏观森林资源监测时通常采用NOAA等中低分辨率数据,因为它们经济、实惠、待处理的信息量少,而且来源有保证,但随之而来的问题是在使用这种信息源时如何保持其精度。高分辨率卫星数据的出现,给林业遥感监测带来了希望,目前多用以IKONOS为代表的高分辨率的卫星影像展开对监测森林资源、工程造林质量、退耕还林效益等方面的研究。

1.1.2高光谱遥感数据

高光谱遥感能够探测到具有细微光谱差异的各种物体,大大地改善了对植被的识别和分类精度。利用高光谱数据实行的混合光谱分解方法可以将森林郁闭度这个最终光谱单元信息提取出来,合理而真实地反映其在空间上的分布[3],对于掌握森林结构与森林环境、加强森林生态系统管理具有重要意义。此外,高光谱遥感数据凭借大量的光谱信息,在森林分类与调查、森林资源变化信息提取、森林火灾监测、森林病虫害评估等方面起到了举足轻重的作用,为实时而科学的森林经营管理增添了一种新技术手段。

1.1.3雷达遥感数据

一般情况下,地球有60%~70%被云层覆盖,可见光、红外技术在这种天气下难以获得有效数据,不能及时为林业行业提供数据支持。而合成孔径雷达(SyntheticApertureRadar,SAR)具有全天时、全天候以及能够穿透掩盖物、较好反映地表结构信息的能力,为林业遥感提供了新的数据源,有效解决了上述问题。SAR遥感通过获取各种森林生物物理参数,被广泛用于识别森林类型、森林密度、年龄和监测森林生长、再生状况、森林砍伐、森林灾害以及估算森林的生物量、蓄积量,特别是对热带雨林砍伐监测,雷达几乎是唯一可以依赖的信息源[4],这些信息有效提高了人们对森林资源的认识。

1.2应用现状

1.2.1森林资源遥感调查

森林资源遥感调查主要是通过野外调查和卫星图像的对照判读,进行森林类型判别,并用遥感数据与地面各种因子建立模型的定量表达,估计森林蓄积量和森林面积,利用多时相遥感影像监测森林覆盖率等。早在1954年,我国就创建了“森林航空测量调查大队”,首次建立了森林航空摄影、森林航空调查和地面综合调查相结合的森林调查技术体系[5]。

然而,过去我国森林资源规划设计调查主要是以航空照片和地形图为参考,制作外业调查手图,通过现场勾绘等手段完成林相图区划。这种传统的调查方式存在调查间隔期过长、调查人员投入多、劳动强度大、一次性经济投入大、出错机率大等问题,难以满足新时期的调查需求。自2003年起,高空间分辨率卫星影像写进森林资源规划设计调查规程,我国很多省区相继应用SPOT5数据进行了森林资源规划设计调查试点[6],有效推动了林业资源调查数字化进程,促进了高空间分辨率卫星遥感技术的研发,相关研究内容主要包括蓄积量估测、树冠信息的提取方法、SPOT5影像用于小班区划的方法,并研发了基于高分辨遥感数据的小班区化系统[7]。高光谱遥感数据应用方面,主要开展了星载高光谱遥感数据的预处理、基于统计模型的森林郁闭度和叶面积指数估测、森林类型遥感识别方法、森林叶绿素含量的几何光学模型反演和机载高光谱数据的优势树种识别技术[8]等方面的研究。

1.2.2森林火灾遥感监测

森林火灾是自然灾害中最为严重的一种,森林一旦发生火灾,不仅会使辛苦几十年培育的林木顷刻间化为灰烬,而且会对生态环境带来严重的负面影响。如果能及时监测、预报森林火灾,其带来的损失就会大大减小。早在20世纪50年代,我国林业行业就开展了利用航空遥感技术进行森林火灾监测的技术方法研究。到70年代末80年代初,美国的LandsatTM、NOAA等卫星数据逐步被我国相关专家学者应用于森林火灾监测的研究中,并在1987年大兴安岭特大森林火灾监测中发挥了非常重要的作用。

随着卫星遥感技术的深入发展与应用,我国科研人员不断地探讨利用遥感技术进行森林防火应用的研究,并取得了许多重要成果。尤其是“十五”以来,面对国内外不断面世的新型卫星遥感数据,我国学者解决了利用这些新型数据进行森林火灾预警监测的应用技术,如针对新出现的Terra/AquaMODIS、ENVISAT-AATSR、ENVISAT-MERIS等卫星数据森林火灾预警监测应用技术需求,有效解决了森林火灾预警监测模型中可燃物类型的分类方法、植被因子的估测、小火点自动识别等方面的应用技术[9];利用MODIS数据进行了森林火灾预警的应用方法;针对新型卫星数据林火信息快速提取的技术需求,建立完善了利用高性能平台森林火灾信息提取的技术系统。通过近20多年的技术突破,我国逐步研究形成了基于卫星遥感数据的森林火灾监测应用方法与技术系统,初步建立了基于航天、航空、望台(塔)以及与地面巡护相结合的森林火灾监测体系[10];同时,还将海事卫星技术等应用于我国森林火灾的预防、监测及扑救工作中。我国国家森林防火指挥部卫星森林火灾监测系统从1995年应用至今,从以前单一的NOAA-AVHRR资料到后来综合应用NOAA、FY、MODIS等资料,逐步发展成为国家森林防火指挥部和各省市林业部门防火办森林火灾宏观监测的主要手段,并为扑救指挥提供了可靠的数据保障和技术支撑。

1.2.3森林病虫灾害遥感监测

植物受到病虫害侵袭,会导致植物在各个波段上的波谱值发生变化。如植物在受到病虫灾害、人眼还不能感觉到时,其红外波段的光谱值就已发生了较大的变化。从遥感数据中提取这些变化的信息,分析病虫害的源地、灾情分布、和发展状况,可以为防治森林病虫害提供有效帮助。早在1978年,腾冲遥感综合试验就已开启了我国遥感技术监测森林病虫灾害的序幕。随着航天遥感技术的发展,“七五”末期、“八五”初期,我国科研人员以松毛虫等食叶害虫灾害为例,广泛开展了针对针叶损失率、松针生物量和灾害程度等遥感监测方法的研究,充分证明当森林植物遭受病虫灾害的侵袭时,其叶绿素、水分等便会急剧下降,叶黄素、叶红素等会提高,必然导致其反射率发生显著变化,此项研究结果为林业遥感病虫灾害监测提供了重要的科学依据。此外还发展了基于多种植被指数的病虫灾害信息提取技术[11]。

“八五”后期和“九五”期间,在国家众多科技项目的支持下,我国科研人员全面地开展了森林病虫灾害遥感监测预警技术的研究,建立了基于单时相和多时相卫星遥感数据的灾害信息提取技术路线,引进吸收了航空录像和航空电子勾绘等遥感监测技术方法,初步探索了天、空、地相结合的森林病虫灾害监测体系。并基于林业业务主管部门的预报、监测、灾害损失评估和决策支持需求,提出了森林病虫灾害的遥感、地理信息系统和全球定位系统技术集成应用模式[12]。最近十几年来,着重开展了基于遥感技术的森林病虫灾害监测专业应用系统的研发,并进行了生产性示范,以完善相关应用系统的可操作性和实用性,同时也展示了其指导森林病虫灾害调查情况的应用潜力[13]。

1.2.4林业生态工程遥感监测评价

林业生态工程遥感监测评价技术就是利用遥感技术,在统一规划和设计的技术平台上,进行应用系统集成,为实现林业生态工程建设的信息资源共享和技术共享提供技术支持。早在1979年,国家就决定在我国西北、华北北部和东北西部风沙危害、水土流失严重的地区,建设大型防护林工程,即“三北”防护林工程。在“七五”期间,实施了重大遥感综合应用项目――“三北”防护林遥感综合调查研究。该项目主要采用了航天遥感技术对“三北”防护林地区的森林类型、面积、具体分布、保存率、草场的数量质量和分布、土地资源类型分布及数量和应用现状进行了综合调查,并建立了基于防护林生态效益的动态监测系统,对不同类型区的造林适宜性做出了分析评价以及对防护林的防护效益进行了评估,为“三北”地区的森林综合治理提供了可靠的数据分析资料[14]。2000年以来,国家先后启动了天然林资源保护、退耕还林工程等六大生态建设和造林工程。2004年开始的“国家林业生态工程重点区遥感监测评价项目”,利用了2003年至2011年期间的MODIS、Landsat-TM、SPOT5、QuickBird等多源卫星遥感数据,共对4个天然林资源保护工程监测区和8个退耕还林工程监测区进行了多期动态监测与评价。“十一五”期间,我国科研人员开展了天然林保护工程、重点防护林工程和京津风沙源治理工程的遥感监测技术研究,开发了“国家重点林业生态工程监测与管理系统”[15],广泛地为林业生态工程管理提供技术支撑与服务,有效推动了林业生态工程遥感监测评价的发展。

3展望

我国林业遥感技术的发展已有二十多年的历史,不仅做了大量的研究和实验工作、积累了丰富的资料和经验,还培养了一大批优秀的科研与应用工作者。但是,伴随新时期国家对林业的要求和林业自身的发展,目前的林业遥感技术仍然不能全面满足实际需要,因此,应进一步加强林业遥感技术与应用系统建设,逐步形成天、空、地一体化的林业遥感应用体系[16]。

3.1建设林业遥感应用综合服务平台

目前国内除森林火灾监测系统应用低分辨率的遥感卫星进行业务运行以外,还没有应用中高分辨率的卫星建立起业务化的运行体系。为实现遥感技术在各类林业调查与监测业务中的广泛应用,形成业务化运行的能力,还需要开展一项重要的基础性、支撑性的设施建设工作,即林业遥感应用综合服务平台的建设。该平台应该建立面向林业遥感技术应用的集成环境,整合林业行业中与遥感技术应用密切相关的各类存储资源、数据资源、计算资源、软件资源和专家资源,逐步形成面向林业行业提供遥感数据的共享服务机制,并支撑林业遥感应用业务系统开发与运行服务的基础平台。该平台应具有能够支撑海量遥感数据存储、查询功能,具有基于网格的遥感数据应用处理和产品加工功能,以及对数据和产品的多层级分发与共享等强大功能。该平台的建设将大力促进森林资源调查、森林火灾、森林病虫灾害及林业生态建设工程的监测等林业遥感应用业务化运行系统的建立。

3.2加快遥感与GIS、GPS的结合

遥感技术具有强大的数据获取能力,却在处理和分析这些数据时存在缺陷,地理信息系统(GeographicInformationSystem,GIS)具有较为完善地空间数据综合分析处理平台,有效地解决了这一难题。概括起来,GIS在林业领域的应用研究内容主要有:森林资源信息管理、森林经营优化决策、森林分类经营区划、森林抽样设计、林业专题制图、林业采伐设计、营造林规划设计、森林资源管理网络等,极大地丰富了遥感数据的分析处理方法。同时全球定位系统(GlobalPositioningSystem,GPS)能够迅速准确地定位与导航,可以确定林业边界、地块、形状、海拔高度等,对实现“数字林业”具有重要意义[17]。因此,要加强遥感与GIS和GPS的结合,逐步形成以林业遥感为基础,以GPS为辅助手段,以GIS为综合处理方法的全方位林业服务体系,最终实现林业资源调查、规划、经营管理的数字化。

3.3重视林业遥感教育和培训工作

任何一门学科的发展都离不开教育与培训工作。林业遥感作为一门高新技术,其发展一日千里,教育工作尤显重要。大学作为林业遥感教育和培训的主力军,不仅要开设全方位的林业遥感专业课程,而且要分层次,针对研究生、本科生和专科生开展不同的教学工作,为林业遥感培养大量的专业型人才和应用型人才。此外,还要充分发挥林业研究机构的作用,将科研成果及时有效地用于实践中。并加大对林业行业机构工作者的培训力度,全面提升我国林业工作者的专业技术水平。

4结语

当前我国林业遥感的主要任务是以遥感技术为中心,提供信息获取与信息服务的手段,为林业建设决策提供监测与效益评价信息。林业行业应在国家林业资源与生态建设综合监测体系建设的基础上,大力推动林业遥感卫星、航空遥感平台、林业遥感信息产品标定等支撑平台的建设,不断完善林业遥感应用综合服务平台。同时应加快遥感与GIS、GPS的结合、重视林业遥感教育和培训工作,形成天、空、地一体化的综合监测模式,建立起林业遥感综合监测评价的业务运行体系,促进我国森林资源、森林火灾、森林病虫灾害和林业生态建设工程遥感监测与评价的业务化运行,为我国森林资源的管理和保护、林业生态建设的管理和决策等提供强有力的支撑。

【参考文献】

[1]王大勇,刘红润.浅谈遥感在我国林业中的应用[J].林业科技情报,2010,42(3):31-33.

[2]史良树.遥感技术现状及其在林业中的应用[J].林业资源管理,2004,4(2):50-52,63.

[3]谭炳香.高光谱遥感森林应用研究探讨[J].世界林业研究,2003,16(2):33-38.

[4]魏钟铨.合成孔径雷达卫星[M].北京:科学出版社,2001.

[5]林辉,童显德,黄忠义.遥感技术在我国林业中的应用与展望[J].遥感信息,2002(1):39-43.

[6]张煜星,等.基于SPOT数据的森林林相图更新技术研究[M].北京:中国林业出版社,2007.

[7]吴春争,冯益明,舒清态,等.基于高空间分辨率影像的林业小班遥感区划系统设计与实现[J].浙江农林大学学报,2011,28(1):40-45.

[8]曾庆伟,武红敢.基于高光谱遥感技术的森林树种识别研究进展[J].林业资源管理,2009(5):109-114.

[9]覃先林.遥感与地理信息系统技术相结合的林火预警方法的研究[D].中国林业科学研究院,2005.

[10]吴雪琼,覃先林,李程,等.我国林火监测体系现状分析[J].内蒙古林业调查设计,2010,33(3):69-72.

[11]武红敢.卫星遥感技术在森林病虫害监测中的应用[J].世界林业研究,1995,(2):24-29.

[12]郭志华,肖文发,张真,等.RS在森林病虫害监测研究中的应用[J].自然灾害学报,2003,12(4):73-81.

[13]亓兴兰,刘健,陈国荣,等.应用MODIS遥感数据监测马尾松毛虫害研究[J].西南林学院学报,2010,30(1):42-46.

[14]“三北”防护林遥感综合调查课题组.“三北”防护林遥感综合调查技术规程[M].北京:中国林业出版社,1988.

[15]陈永富,刘华,孟献策.国家重点林业生态工程监测与管理系统[M].北京:中国林业出版社,2011.

遥感技术起源范文篇2

关键词:遥感技术国土资源调查与监测

中国的遥感技术从上世纪70年代起步,经过几十年的艰苦努力,已发展到目前的实用化和国际化阶段,具体表现在具备了为国民经济建设服务的实用化能力和全方位地开展国际合作使其走向世界的国际化能力[1]。

20世纪90年代中期,经过科学、充分的可行性研究和专家论证,当时的国家科委在“九五”科技攻关计划中设置了“重中之重”的“遥感、地理信息系统、全球定位系统技术综合应用研究”项目(简称“3S”项目)。遥感技术在实用化、产业化的发展道路上取得了可喜的成就[2]。

经过从“六五”、“七五”、“八五”、“九五”、“十五”和“十一五”计划的连续支持和大规模投入,我国遥感技术水平已彻底摆脱落后局面,昂首跨入世界领先水平。

我国遥感监测工作从“六五”才开始,采用航空遥感与卫星相结合的方法进行资源调查应用。经过六个五年计划的科研攻关,遥感、地理信息系统、全球定位系统(GPS)等空间信息技术领域己形成了相当的科学积累,锻炼培养了大批科研、技术人员,同时3S技术在资源、生态环境调查与监测方面的应用也取得了重大进展,其中包括我国自1999年实施国土资源大调查以来陆续部署和开展的土地利用、地下水、地质灾害和矿山地质环境等方面的国土资源遥感监测工作[3]。

“六五”期间,腾冲大型综合遥感试验项目(1978)完成了75项彩红外航空遥感专题研究,其中直接产生了坡度图、水资源图、土壤图、土地资源图、土地类型图、土地利用现状图、农业环境图、农业自然区划图等一系列成果。这是我国首次组织严密的遥感科技大协作,在我国遥感发展史上具有里程碑意义。

遥感技术在国土资源动态监测上具有相当大的优势和潜在的市场,如,在1980-1985年期间,我国曾利用陆地卫星MSS数据进行了全国范围的土地资源调查,并按1:50万比例尺成图,宏观地反映了我国大地资源的基本状况;1984年开始由国家土地局主持开展了全国范围的土地资源详查工作,采用了航片和地面实地测量的方法,对农地采用1:1万比例尺成图、林地及草地采用1:5万比例尺成图、在西部地区利用航片与陆地卫星数据结合按1:10万比例尺成图。但是由于区域范围大,使项目实施历时长达10年,可见实施全国的土地资源调查迫切需要高空间分辨率的卫星遥感图像[4]。

“七五”和“八五”期间进行了一些遥感应用于生态环境监测和自然灾害监测方面的专题研究。1991-1996年,采用地理信息系统技术与遥感技术相结合的方法,建立了中国土地利用区域分异模型;1986-1991年,国家重点项目已开展了“三北”防护林遥感综合调查工作,在国家攻关课题“长江三峡工程对生态环境的影响及对策”研究项目中、开展了采用卫星磁带数据进行三峡地区遥感土地覆盖计算机分类,以及应用TM资料进行中国资源环境遥感宏观监测研究(东部1:25万,西部地区1:50万)、黄土高原地区土地利用变化、黄淮海地区水域动态变化的遥感监测等研究工作。

1986-1988年,作为我国农业遥感应用的代表,由中国科学院资源环境局主持的“黄土高原遥感专题研究”在林草资源遥感调查、土壤侵蚀定量遥感调查、土地类型遥感综合研究、草场生物量的遥感估算、农业地物光谱特征及其应用基础研究、黄土区暴雨与下垫面关系的遥感分析等许多方面取得了大量成果,为黄土高原的综合治理提供了全方位的技术支持。1988年,武汉测绘科技大学在湖北省利川市利用多光谱TM影像进行了草场资源调查,6个人用半年时间就完成了近百人需要历时3年才能完成的工作量,且吻合率达96%,成为遥感应用的成功范例。

利用遥感技术,完成了我国北方4省区10年(1987~1997年)土地开发利用综合评价、全国土地利用现状概查、松嫩平原土地利用遥感调查、内蒙古草原资源调查和监测等项目。

1987年大兴安岭发生特大森林火灾时,中国科学院卫星地面站提供的火情现势卫星影像图对现场指挥、调度扑救起到了决定性作用。1998年长江、嫩江流域发生特大洪灾时,航空、航天平台的遥感实时监测,为指挥抗洪救灾、恢复生产发挥了巨大作用。

“八五”期间中国科学院和农业部“国家资源环境遥感宏观调查与动态研究”小组在1992-1995年的3年时间里完成了全国资源环境调查,建立了一个完整的资源环境数据库,较过去开展一项单项专题的全国资源环境调查需5-10年的时间是一个很大进步。在项目实施中全部采用了90年代接收的最新陆地卫星TM图像作为主要的信息源,同时也使用了我国近年内发射的多颗返回式资源调查卫星的高分辨率图像,在大兴安岭、秦岭、横断山脉一线以东选用1:25万比例尺,此线以西采用1:50万比例尺进行遥感图像判读、制图及数据库建立工作。为此,须完成全国陆地部分国际标准分幅地图近500幅幅面的调查、制图与数据分析工作。除全国范围的国土资源调查外,各主要省市,如北京、天津、浙江、陕西、内蒙等许多省市自治区也开展了国土资源调查工作。

“九五”期间,“3S技术综合应用研究”被列为国家攻关项目,建立了部级基本资源与环境遥感动态信息服务体系,并在全国范围内选取五个示范县(市),开展高精度大比例尺县级资源环境动态监测技术系统示范工程,提供了典型区微观应用范例。

1995年国家遥感中心组织力量完成了《中国农业状况图集》,采用图表相结合的方式,形象直观地反映了我国农业发展的综合水平,以及粮食、棉花、油料等方面的状况及变化,揭示了农业发展中面临的耕地减少等问题,为中央和地方政府进行宏观决策提供了科学依据。该项工作受到了中央领导同志的肯定。

“十五”期间,完成了全国省级(包括台湾省)国土资源遥感综合调查,编制了全国1:400万土地资源、森林资源、矿产资源、地质灾害、海岸带资源5个专题图件,创建了全国国土资源遥感综合调查数据库总体架构。

“十一五”期间,建设多目标的、实时动态的、天地一体化的和长期的遥感监测技术体系成为遥感技术发展与应用的重要战略方针。在生态环境遥感调查与研究中强调遥感技术应发挥重要的作用,将其服务领域拓展到与国计民生有关的城市、环境、灾害、生态、农林调查等方面:(1)矿山开发现状及环境恢复整治的遥感动态监测,建立矿山监测信息系统;(2)流域遥感调查监测研究,包括湖泊环境监测。如淮河流域环境遥感动态监测方法研究,利用比较成熟的雷达技术监测湿地的动态变化及河道演变,长江中下游环境遥感动态监测研究等;(3)地球表层系统变迁遥感调查。遥感在资源环境方面,应该做全国性的、超前性的系统工作,包括地质背景调查,土地质量状况与土地系统变迁调查(区别于土地部门的土地利用动态监测),表生水系调查(地表水分布、土地含水性、地表水污染、水文状况、冰雪覆盖度),植被系统调查(选择适当的方向,以区别于农林部门的工作)。

2007-2009年,进行了全国第二次土地调查工作。第二次土地调查作为一项重大的国情国力调查,全面查清了全国土地利用状况,掌握了真实的土地基础数据,并对调查成果实行信息化、网络化管理,建立和完善土地调查、统计制度和登记制度,实现了土地资源信息的社会化服务,为经济社会发展、国土资源管理的提供了依据。

2009年6月,我国开展了全国“一张图”及土地变更调查工程建设,在充分利用第二次全国土地调查、土地利用动态遥感监测和年度土地变更调查等已有工作经验和成果的基础上,开展全国土地调查与监测,将遥感影像、土地利用现状、基本农田状况、土地利用动态遥感监测以及基础地理等多源信息集合到统一的地图上,并与国土资源的计划、审批、供应、补充、开发、执法等行政监管系统迭加,共同构建统一的综合监管平台,实现资源开发利用的“天上看、网上管、地上查”,从而实现资源动态监管的目标。

2003-2010年,中国地质调查局组织开展了全国区域地质环境遥感调查与监测工作,系统查明了我国陆域现代冰川、海岸线、河流湖泊、湿地、荒漠化、石漠化、城市扩展等生态地质环境因子的状况及动态变化规律,系统分析了我国生态地质环境变化的影响因素,首次建立了集1∶5万、1∶10万、1∶25万、1∶100万多比例尺,第四纪地质、地貌、现代冰川雪线、海岸线、湿地、荒漠化、石漠化、城市扩展等多因子,1975年MSS、2000年ETM、2007年CBERS三期数据为一体的全国区域地质环境遥感调查与监测信息管理平台,实现了全国遥感调查与监测影像数据、专题解译成果数据、综合科研成果数据的入库管理、查询、对比监测和统计分析等功能,为全国生态地质环境长期、动态、快速遥感调查与监测,以及成果的社会化服务奠定了基础,也为本次北京市遥感国土资源遥感综合调查与监测工作提供了一定的数据资料。

至今,我国陆续开展的国土资源监测工作,主要包括土地利用动态监测、地下水监测、地质灾害监测和矿山地质环境监测等。然而,监测网络不健全、技术支撑服务工作滞后、监测队伍管理体制不协调等问题在我国国土资源监测工作中仍然存在。

遥感技术正在飞快的发展,遥感应用的水平将不断提高。新一轮国土资源大调查以来的实践再次证明,遥感技术已成为国土资源调查与监测的重要工具。随着我国小康社会建设和经济的高速发展,国土资源领域对遥感技术的需求在快速增长。如何进一步发挥遥感技术在国土资源工作的作用,是需要不断思考和探索的重要问题。

总体上,国土资源遥感应以国家需求为牵引,加快技术发展,拓展遥感应用的深度和广度,提高遥感应用的效益。要紧密跟踪遥感新理论、新技术、新方法的发展步伐,加强遥感新技术的引进、吸收、创新与开发,并及时推广应用,逐步实现遥感解译的自动化、定量化与标准化。同时要根据需求有重点地做好遥感新技术的攻关和储备,为实现国土资源调查方法技术的全面创新,推进国土资源的宏观规划和科学管理,提高国土资源的合理开发利用和保护水平提供技术支持。

参考文献

[1]熊盛青,唐文周,姚正煦.航空物探遥感论文集[M].北京:地质出版社,1999.

[2]国土资源部.卫星遥感为国土资源管理助力[A].国防科学技术工业委员会.中国航天50年回顾[C].北京:北京航空航天大学出版社,2007.

遥感技术起源范文篇3

[关键词]遥感应用;变化检测;资源环境卫星气象学一般流程

一、遥感技术变化检测应用

1.1遥感技术变化检测应用综述

从1972年美国发射第一颗陆地资源卫星以来,对地观测卫星发展迅速,应用领域得到不断扩大,应用成效也得到不断提高由于遥感观测有着信息获取方式优良,获取条件相对简单,实时性、高效性、广域性以及其他诸多优点,因而如何从遥感观测所供给的大量数据中提取变化信息,并将这些信息运用于生产生活的方方面面,已经成为目前遥感应用领域中一个亟待解决的问题。

为了解决上述问题,变化检测技术应运而生。所谓变化检测技术就是对不同时段的目标或现象状态发生的变化进行识别、分析的计算机图像处理系统,包括判断目标是否发生变化、确定发生变化的区域、鉴别变化的类别、评价变化的时间和空间分布模式。在遥感技术几十年的发展历程中,变化检测技术的研究成了各地专家学者研究的一个重要的课题。在计算机图形学、空间探测技术以及其他与遥感有关的诸多领域蓬勃发展的带动下,世界各地学者跨国、跨领域的交流合作下,基于遥感影像的变化检测技术迎来了一个高速发展时期。然而就目前的技术与设备而言,目前所采用的任何一种变化检测方法都具有其局限性。在下文中,我们将就各类方法的局限性与优越性进行讨论,了解其特点与所适用的领域。

1.2主流变化检测方法及优缺点

随着数十年来各国学者跨学科跨领域的合作交流,遥感相关学科的蓬勃发展,作为土地覆盖利用监测的关键技术的变化检测方法日益繁多。可以将遥感影像的配准方式以及变化检测的数据源作为划分依据,将目前主流的变化检测方法分为两大类、七种方法。第一类是先进行图像配准后变化检测的方法;第二类是变化检测与图像配准同步进行的方法。或者,可以按照是否需要进行实现分类作为划分依据,将变化检测方法划分为两类:即直接比较变化检测法、分类的变化检测法。

二、遥感技术在资源环境中的应用

2.1遥感技术应用于资源环境监测中的必要性

自第一次工业革命以来,经济发展与环境保护、资源开发和可持续发展之间的矛盾便已经存在,且受到世界经济的不断发展以及后续两次工业革命的影响,人与自然、人与资源的矛盾日益加剧。如何处理与社会发展相共生的资源匮乏以及环境恶化,成为人们不得不面对的一个问题。然而一直以来,两道天堑阻隔在资源环境问题处理的面前,即如何全面而快速地获取资源环境变化信息,以及如何高效高精度的处理这些数据。直到20世纪60年代,随着空间探测技术的发展以及大数据处理技术的日渐成熟,遥感技术进入了人们的视野之中。遥感技术以其观测的广域性、数据获取的综合性、资料采集与数据处理的高效性、处理结果的高精度性等优势成了现如今,局部乃至全球资源环境数据获取与处理的重要手段。

2.2遥感技术应用于资源环境的优越性

遥感技术对环境研究来说,其优越性可归纳为“高、远、多”。

高,遥感影像从高空对地面目标进行观测,所受的遮蔽少,视野开阔,观测范围大,鸟瞰全局,从而使遥感影像更加完备而全面的实现地面观测。

远,遥感技术能够不直接接触被测物体,远距离的获取地物的几何与物理信息,对目标地物及其所处的环境不造成干扰,使得获得的数据更加客观可靠。

多,包括多点位、多谱段、多时相、多高度的遥感影像和“多次增强”的遥感信息。

总的来说,遥感技术应用于环境资源中,可以为用户提供时空连续性的区域性同步信息。这些信息具有综合性、系统性与同时性,而这也恰恰是遥感技术区别于其他技术,在资源环境中的应用所具有的优越性。

2.3遥感技术在资源环境中的发展趋势

遥感影像获取技术方面,随着高性能新型传感器的研制开发水平的提高以及环境资源遥感对高精度遥感数据要求的提高,高空间和高光谱分辨率已是卫星遥感影像获取技术的总发展趋势。遥感技术在资源环境中的应用主要呈现以下五个大的发展的趋势:

2.3.1遥感影像获取技术蓬勃发展

2.3.2数据处理系统呈现高速性、大容量性和高精度性的特点

2.3.34S技术(GIS、GPS、RS、ES)技术呈现集成化、一体化的发展趋势

2.3.4遥感信息模型与遥感信息处理方法的逐步发展完善

2.3.5国家环境资源信息系统以及环境遥感应用系统的建立

可以预见的是,遥感技术在资源环境中的应用在未来的发展中,功能模块集成化、技术科学化、数据处理智能化、检测科学化等特点将更加明显。随着遥感技术以及相关学科的发展,在未来的生产生活中,遥感技术必将更加深入而广泛地应用于资源环境资料的获取与处理,以其独特的优越于生产生活。

3遥感技术在气象学中的应用

3.1遥感技术应用于气象学的优越性与局限性

大气遥感作为遥感技术数十年间发展最为迅速的新兴学科,在大气科学中一直发挥着重要作用,是现今气象学的支柱学科之一。随着气象学的研究与发展,气象学对全球范围以及区域范围的大气特征的观测越来越强调其时空连续性。且由于气象学研究的主要对象无法直接接触,或直接接触难度大,遥感技术作为一种不直接接触被测物体,即可获得其物理几何特性的观测技术,显示出了其独特的魅力。另一方面大气物理学、近代电磁学、计算机及其相关学科的发展,传感器等硬件O施的完善,都进一步地推动了遥感技术在气象学中应用的深度与广度。

大气遥感是利用遥感器传感器所监测到的监测大气结构、状态及变化,不需要直接接触目标而进行区域性的跟踪测量,能够快速地进行污染源的定点定位,从而获得全面的综合信息得一门遥感技术。安置在遥感平台上的传感器通过对大气光谱特性的观测,可以将无法由遥感手段直接得到的各气体成分以及其他的各个物理量判读出来。遥感技术所用的探测波段广,可以根据不同大气成分的电磁波谱特性,选用合适的波段进行监测。同时,由于遥感平台上所搭载的传感器对于各种波谱的探测宽度与灵敏性远高于人眼,故可以探测到人眼无法识别的对象。遥感测量获得的原始影像能够给气象学研究提供更多的原始数据,而遥感影像的后续处理则能将所获取的大量数据转化成有益于气象研究的信息。

然而,受限于当前遥感技术的发展水平以及软硬件设备的技术条件,遥感应用于气象学中所获得的卫星云图分辨率有限,同时由于除观测对象外其他大气成分干扰,摄取的影响将会产生这样或那样的为误差,严重的影响测量精度,降低了遥感影像所获取的气象学资料的可靠性。

3.2遥感技术应用于气象学的几个实例

3.2.1有害气体的监测

有害气体通常指人为或自然条件下产生的二氧化硫、氟化物、乙烯、烟雾等对生物有机体有害的气体。但用遥感技术对大气中的某一成分进行观测时,我们往往不能直接对其进行观测。但是,@并不意味着遥感技术不适用于该类观测。我们可以利用所观测成分特定的电磁光谱特性间接地监测该成分的分布以及变化情况;或者我们可以通过观察这些不易直接观测的成分对其他地物的影响,以达到对目标成分追踪观测的目的。比如地表硫化面,酸雨对植物的腐蚀情况等等。

3.2.2城市热岛效应监测

城市热岛效应是城市中的空气温度高于城市周围郊区的温度,故形成了从城市流向郊区的一种环流。与有害气体监测相类似,城市热岛效应监测同样采用了间接监测的手段。我们知道到,植被覆盖率与植被覆盖种类和城市热岛效应的影响范围存在很强的相关性。通过比对城郊的植被变化,就可以得到城市热岛到效应的影响范围。当然,我们也可以通过直接比较不同时相的遥感热红外影像直接得到城市热岛效应的日/年变化规律。

4遥感技术应用的一般流程总结

遥感技术应用的一般流程:

随着遥感技术应用领域的日益广阔,各个学科与遥感技术的联系逐渐加强,遥感技术的规范化、流程化成了大势所趋。如何建立一个普遍适用的大体操作流程,成了我们现在急需解决的问题,笔者根据平时所学以及汇总众多的资料,现提出自己的观点。

4.1利用遥感平台上的传感器对目标地物进行观测,实现数据的获取与输入。

4.2采集光谱特征,并依照光谱特征建立模型,并对模型进行评估,以此作为是否重建模型的依据。

4.3利用所建立的模型对采集到的数据进行处理,可分为三个流程:(1)建立数据处理流程;(2)选择各个环节所采用的数据处理方法;(3)输入所需处理数据并配置相关参数。

4.4获取处理后的数据,并对数据进行后续处理。

5存在的问题及展望

5.1存在的问题

遥感技术经过数十年的发展,已经成为一个十分完善的学科体系,应用于生产生活的方方面面。然而,在现阶段的技术条件的限制下,遥感技术仍然需要面对一些技术上的挑战。

首先是遥感技术发展的过程中,尺度与角度的问题。由于用不同空间分辨率获取的图像间没有简单的平均或平分对关系。[16]传感器的分辨率与地物的辐射值并不满足线性相关。同时,由于传感器所接收到的辐射信号具有多源性和多时性,这就给数据的几何配准带来了不便。另一方面,虽然随着人工智能与计算机图形学技术的发展,遥感信息的提取效率越来越高。然而由于技术条件以及软硬件条件的限制,遥感信息的自动提取仍然是我们急需解决的问题。最后,随着时间维度的加入,遥感数据变得异常复杂。如何实现对四维数据进行同化,是我们不得不面对的问题。

5.2对遥感未来的展望

遥感技术方兴未艾,即使是发展到现在,仍然有着巨大的发展潜力。无论是空间探测技术的进步,还是传感器的更新换代,都将极大地促进遥感技术的发展与繁荣。展望未来,我们可以发现遥感技术将呈现以下几个特点:

5.21随着传感器的更新换代以及遥感技术更高精度的要求,卫星遥感将呈现高分辨率、高精度的发展趋势。

5.2.2随着雷达技术的发展与广泛使用,各式雷达传感器的广泛使用,遥感技术走向全天候、全时段的新阶段。

5.2.3热红外遥感技术的大力推广使得遥感技术对于与地球表面热量有关的地物及其变化的监测进入了一个新的高度。

5.2.44s技术的发展使得遥感技术呈现集成化一体化的趋势。

5.2.5数字地球概念的提出,使得遥感技术与其他相关学科在全球层面上实现了一体化、系统化、联系化,构成了一个有机的整体网络。

结束语

自19世纪60年代遥感诞生之日起,数十年来,遥感技术在变换检测、资源环境信息获取与处理等诸多领域一直发挥着重要的作用。当然,任何技术都不是万能的,都有其局限性。然而遥感技术尽管经过了数十年的发展,但其应用前景依旧广阔。尤其是随着深空探测技术、图像处理技术、波谱分辨技术等相关领域学科的不断发展推进,遥感技术更是展现出来前所未有的生机,笔者限于所学知识有限,无法对遥感技术进行更深层次的专业化讨论,但我们相信,遥感技术的前景一定是务必广阔的。

参考文献:

[1]梅安新,彭望,秦其明,等.遥感导论[M].北京:高等教育出版社,2001.

[2]顾文俊,赵忠明,王苓涓.基于变化检测技术的城区建筑变化目标提取[J].计算机工程与应用,2004(1):198200.

[3]吴芳,刘荣,田维春,曾政祥.遥感变化检测技术及其应用综述[J].地理空间信息,2007,No.2604:57-60.

[4]吴芳,刘荣,田维春,曾政祥.遥感变化检测技术及其应用综述[J].地理空间信息,2007,No.2604:57-60.

[5]施益强,陈崇成,陈玲.遥感技术在环境资源中的应用进展与展望[J].国土资源遥感,2002,04:7-13.

[6]石丽娜,赵旭东,韩发.遥感技术在环境监测中的应用和发展前景[J].贵州农业科学,2010,v.38;No.23401:175-178.

[7]陈海健.遥感技术在环境监测中的应用和发展前景[J].中国新技术新产品,2011,No.20313:6-7.

[8]刘纪远主编.中国资源环境遥感宏观调查与动态研究〔C〕.北京:中国科学技术出版社,1996.

[9]程立刚,王艳姣,王耀庭.b感技术在大气环境监测中的应用综述[J].中国环境监测,2005,05:17-23.

[10]吕达仁,王普才,邱金桓,陶诗言.大气遥感与卫星气象学研究的进展与回顾[J].大气科学,2003,04:552-566.[11]曹国东.遥感技术在大气环境监测中的应用[J].内蒙古科技与经济,2010,No.20907:57+59.

[12]刘红,林昌虎,何腾兵.遥感技术及其在环境科学领域中的应用――以水环境和大气环境为例[A].贵州省土壤学会.贵州省土壤学会2012年学术研讨会论文集[C].贵州省土壤学会:,2012:6.

[13]张春利,曹宝顺.遥感技术在农业气象业务服务中的应用[J].民营科技,2013,No.15603:68.

[14]李春雷.基于云平台的遥感业务流程研究及原型实现[D].中国地质大学(北京),2013.

[15]汪承义,赵忠明.遥感影像流程化处理系统的设计与实现[J].测绘科学,2006,06:105-106+88+7.