初中数学工作坊个人的研修总结范文(整理11篇)
初中数学工作坊个人的研修总结范文篇1
这学期,一个全新的教育理念生本教育进入了我们的视线,将生本教育融入到高效课堂中来,通过这段时间的摸索和探索,我对实施高效生本课堂做如下总结。
一、学生们得到了释放
“生本教育”要求教师放弃讲解,而是抛出有价值的问题让学生你一句我一句的讨论,体现出学生是学习的主人。在课堂上给学生充足的时间,让孩子们自主交流、展示成果、互相质疑,在合作、交流、质疑中主动学习,获取知识和解决问题的能力,经过自己的实践获得的知识,他们特别有成就感,自信心增强,在这种氛围中学习,孩子们很放松,他们得到了释放,在课堂上很放的开,对学习更加感兴趣了。其中,我们班的崔新伟同学的变化就很明显,原来的时候他在课堂上属于不主动积极回答问题的那类学生,学习的参与积极性不高,但自从我们开始让学生们一小组合作为单位讨论、探究并走向讲台当小老师为大家讲题后,他像换了一个人似的,积极性特别高。看到同学们的变化,我特别高兴特别激动。
二、老师的角色得到翻天覆地的变化
关于这一点我深有体会,自从实施了高效生本课堂,我才意识到我这样的老师太强势了,而且我发现在教学中我们太自作多情了,很多时候我们一厢情愿承担了许多工作,渴望孩子们按照我们设计的方向去发展,但到最后却往往是我们自己失败。
三、遇到的问题
在高效生本课堂中,我发现孩子们都是自信的、快乐的,当学生从自己研究和探索中发现规律,找到解决问题的方法的时候,我感到非常的意外和喜悦。但是,有时候还存在一些问题,孩子们怎么这么不合作?语言表达能力怎么这么欠缺?每次做总结时怎么总是说不到点子上,还这么罗嗦?实际上,他们的现状都非常正常,因为在前期,我们并没有在课堂上有意识的去培养孩子的.这些方面的好习惯,现在,我们刚刚接触生本教育,作为老师是新手,很多地方作的都不够,又何况是孩子们呢?但是,通过他们的变化,发现他们在学习上冲劲十足,自主意识很强,慢慢有了合作意识,更多的是学习上的创新意识,我深切的意识到,孩子们的潜力是无穷无尽的。
初中数学工作坊个人的研修总结范文篇2
一、圆
1、圆的有关性质
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。
由圆的意义可知:
圆上各点到定点(圆心O)的距离等于定长的点都在圆上。
就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。
圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧。小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。
圆心相同,半径不相等的两个圆叫同心圆。
能够重合的两个圆叫等圆。
同圆或等圆的`半径相等。
在同圆或等圆中,能够互相重合的弧叫等弧。
二、过三点的圆
1、过三点的圆
过三点的圆的作法:利用中垂线找圆心
定理不在同一直线上的三个点确定一个圆。
经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。
2、反证法
反证法的三个步骤:
①假设命题的结论不成立。
②从这个假设出发,经过推理论证,得出矛盾。
③由矛盾得出假设不正确,从而肯定命题的结论正确。
例如:求证三角形中最多只有一个角是钝角。
证明:设有两个以上是钝角。
则两个钝角之和>180°
与三角形内角和等于180°矛盾。
不可能有二个以上是钝角。
即最多只能有一个是钝角。
三、垂直于弦的直径
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。
弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。
推理2:圆两条平行弦所夹的弧相等。
四、圆心角、弧、弦、弦心距之间的关系
圆是以圆心为对称中心的中心对称图形。
实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。
顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。
定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。
推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。
五、圆周角
顶点在圆上,并且两边都和圆相交的角叫圆周角。
推理1:同弧或等弧所对的圆周角相等。同圆或等圆中,相等的圆周角所对的弧也相等。
推理2:半圆(或直径)所对的圆周角是直角。90°的圆周角所对的弦是直径。
推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。
初中数学工作坊个人的研修总结范文篇3
把一元二次方程化成ax2+bx+c的一般形式,然后把各项系数a,b,c的值代入求根公式就可得到方程的根。
公式法
公式:x=[-b±√(b2-4ac)]/2a
当Δ=b2-4ac>0时,求根公式为x1=[-b+√(b2-4ac)]/2a,x2=[-b-√(b24ac)]/2a(两个不相等的实数根)
当Δ=b2-4ac=0时,求根公式为x1=x2=-b/2a(两个相等的实数根)
当Δ=b2-4ac<0时,求根公式为x1=[-b+√(4ac-b2)i]/2a,x2=[-b-√(4ac-b2)i]/2a
例3.用公式法解方程2x2-8x=-5
解:将方程化为一般形式:2x2-8x+5=0
∴a=2,b=-8,c=5
b2-4ac=(-8)2-4×2×5=64-40=24>0
∴x=(4±√6)/2
∴原方程的解为x?=(4+√6)/2,x?=(4-√6)/2.
大家不知道的是两个复数根在初中数学的学习中理解为无实数根。
初中数学工作坊个人的研修总结范文篇4
一、圆
1、圆的有关性质
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。
由圆的意义可知:
圆上各点到定点(圆心O)的距离等于定长的点都在圆上。
就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。
圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。
圆心相同,半径不相等的两个圆叫同心圆。
能够重合的两个圆叫等圆。
同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的弧叫等弧。
二、过三点的圆
l、过三点的圆
过三点的圆的作法:利用中垂线找圆心
定理不在同一直线上的三个点确定一个圆。
经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。
2、反证法
反证法的三个步骤:
①假设命题的结论不成立;
②从这个假设出发,经过推理论证,得出矛盾;
③由矛盾得出假设不正确,从而肯定命题的结论正确。
例如:求证三角形中最多只有一个角是钝角。
证明:设有两个以上是钝角
则两个钝角之和>180°
与三角形内角和等于180°矛盾。
∴不可能有二个以上是钝角。
即最多只能有一个是钝角。
三、垂直于弦的直径
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。
弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。
推理2:圆两条平行弦所夹的弧相等。
四、圆心角、弧、弦、弦心距之间的关系
圆是以圆心为对称中心的中心对称图形。
实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。
顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。
定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。
推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。
五、圆周角
顶点在圆上,并且两边都和圆相交的角叫圆周角。
推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。
六、圆的判定性质
1.不在同一直线上的三点确定一个圆。
2.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的集合
5.圆的内部可以看作是圆心的距离小于半径的点的集合
6.圆的外部可以看作是圆心的距离大于半径的点的集合
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
10.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
12.①直线L和⊙O相交d
②直线L和⊙O相切d=r
③直线L和⊙O相离dr
13.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理圆的切线垂直于经过切点的半径
15.推论1经过圆心且垂直于切线的直线必经过切点
16.推论2经过切点且垂直于切线的直线必经过圆心
17.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20.①两圆外离dR+r②两圆外切d=R+r
③.两圆相交R-rr)
④.两圆内切d=R-r(Rr)⑤两圆内含dr)
初中数学工作坊个人的研修总结范文篇5
我是一名普普通通的中学数学教师,我觉得作为一个好老师,首先要爱他们,包容他们,我相信好学生是夸出来的,我不是神,只是一个普通的人,或许在工作中也有这样那样的失误,但我会努力去关爱他们。对如何有效教学形成了独特的见解。
1、培养积极探究习惯,发展求异思维能力。
在教学中,构建数感的理解、体会,要引导学生仁者见仁,智者见智,大胆,各抒己见。在思考辩论中,教师穿针引线,巧妙点拨,以促进学生在激烈的争辩中,在思维的碰撞中,得到语言的升华和灵性的开发。教师应因势利导,让学生对问题充分思考后,学生根据已有的经验,知识的积累等发表不同的见解,对有分歧的问题进行辩论。
通过辩论,让学生进一步认识了自然,懂得了知识无穷的,再博学的人也会有所不知,体会学习是无止境的道理。这样的课,课堂气氛很活跃,其间,开放的课堂教学给了学生更多的自主学习空间,教师也毫不吝惜地让学生去思考,争辩,真正让学生在学习中体验到了自我价值。这一环节的设计,充分让学生表述自己对数学的理解和感悟,使学生理解和表达,输入和输出相辅相成,真正为学生的学习提供了广阔的舞台。
2、注意新课导入新颖。
“兴趣是最好的老师”。在教学中,我十分注重培养和激发学生的学习兴趣。譬如,在导入新课,让学生一上课就能置身于一种轻松和谐的环境氛围中,而又不知不觉地学数学。我们要根据不同的课型,设计不同的导入方式。可以用多媒体展示课文的画面让学生进入情景;也可用讲述故事的方式导入,采用激发兴趣、设计悬念……引发设计,比起简单的讲述更能激发学生的灵性,开启学生学习之门。
虽然在工作中我们取得了一些成绩,但是这离我们所追求的目标还有很长的路要走。集体备课、研修活动培养了教师理解和把握教材的能力,唤醒了教师推进新课程的意识,中学数学研修正在逐渐由“经验型”向“反思型”和“研究型”群体发展。在我们看来,课改与教研是一个永恒不变的主题,我们还要把教后记只注重对具体实践结果的粗浅回顾,提高到对实践本身的深入反思,使“研”更有深度;同时有效地利用数学教师的博客,与同行交流思想,为学生提供服务!
初中数学工作坊个人的研修总结范文篇6
知识要领:非负数,顾名思义,就是不是负数的数,也就是零和正实数。例如:0、3.4、9/10、π(圆周率)。
非负数
非负数大于或等于0。
非负数中含有有理数和无理数。
非负数的和或积仍是非负数。
非负数的和为零,则每个非负数必等于零。
非负数的积为零,则至少有一个非负数为零。
非负数的绝对值等于本身。
常见的非负数
实数的绝对值、实数的偶次幂、算术根等都是常见的非负数。
常见表现形式
非负数的准确数学表达是a≥0、│a│、a^2n是常见的非负数。
知识归纳:任何一个非负数乘以-1都会得到一个非正数。
初中数学工作坊个人的研修总结范文篇7
一、问题提出
多数人的眼里,数学是一门比较难学的学科。特别是新课程改革后,数学新增加了很多内容,相当多的一部分学生向老师抱怨说数学课本的内容和知识点那么多,老是记不住,学过就忘了。有的还说课本里的内容太简单了,能看懂,但是到考试的时候不会做题,题目跟学过的知识点联系不起来。老师也说,想不明白明明很简单的题目搞不懂为什么学生不会做,教学相当的被动。为了更好地指导老师教学和学生学习数学,我们设计了一份关于数学的学习兴趣,学习习惯,学习态度,学习信心和新课程改革的调查问卷。
二.调查研究
(1)调查对象
针对可能会出现不同的情况,我们对六年级的部分学生进行了抽样调查。
(2)调查结果和分析
(一)对待数学的兴趣与态度
从调查数据可以看出来,42.80%的同学对数学用着浓厚的兴趣,他们都认为数学是一门有趣,有挑战性的学科。这对数学老师无形是一个鼓舞,大家都知道兴趣是最好的老师。这证明数学相对于其他学科来说,自有吸引学生的特性,只要好好的引导,适当的处理教材的内容,很多学生还是愿意学,并且学好它的,但不可否认,由于数学理论性和逻辑性很强,教科书相对枯燥,在实际生活中难以用到,这也造成相当多的一部分学生不喜欢学数学,不过随着新课程的改革,数学教科书的例子已经越来越多采用现实生活的例子,这对提高学生学数学的兴趣有一定的帮助。
学生对数学的兴趣主要取决于学生自己的数学基础。能否培养他们的兴趣,这将对教学的成功与否具有非常重要的意义。影响学生学习数学兴趣的因素是多方面的:有学生本身的因素,也有老师的因素,也有课本本身的因素。
在调查中,对数学有兴趣的学生,17.74%是因为“数学有趣”,23.91%是因为“数学与生活联系紧密,将来有很多地方可以用到”,11.57%的学生是因为觉得“数学有我想从事的事业和理想”,38.82%的学生是因为感到“数学可以锻炼逻辑思维”,只有7.97%的学生是因为“老师讲得好”才喜欢。调查的问卷中可以体现出,学生对数学是否感兴趣,取决于能否让学生感到数学有用和能否可以锻炼他们的逻辑思维。
对数学没有兴趣的学生,38.00%的学生认为“数学太难”,30.75%的学生是因为“以前没学好,基础不好”,9.75%的学生是因为数学跟自己理想从事的方向太远了,只有8.00%的学生认为数学没有多大用处,13.50%的学生回答是因为“老
师教得不好”。因此,如何扭转学生对数学的看法以至改变这种现状,这将是教师必须认真对待的教学问题。这就要求教师备课要充分,上课语言要简洁易懂,将课本的重难点讲解透彻,把握到位;加强学生的基础训练,使学生对基础知识做到融会贯通。
(二)学生对数学知识的归纳情况。
由调查数据可以看出,绝大部分学生对书本中的小结都是持肯定的态度的,也就是说每一章的小结或多或少都会对学生有一定的帮助,但是我们应该怎样去看待这个小结,怎样去对待每一章或是每一个知识点的小结归纳,从第一组数据我们可以看到有32.58%的学生觉得书本中总结得还可以,有44.19%的学生觉得总结得不够,有10.49%的学生觉得很难把这些总结转化为自己的知识,还有12.73%的同学就是没什么感觉,而从第二组数据里可以看到,能够真正自己把知识总结出来又转化为自己的知识的只有11.57%的同学,这也就意味着我们老师要在学完每一章或是每一个知识点之后帮学生总结归纳相关的知识,使之形成一个系统的知识结构,便于学生对知识的理解和掌握。
(三)学生对数学的学习习惯。
由调查数据可以看出,目前绝大多数学生在数学学习的时间安排上都不是那么的有规律,每天都安排时间复习的学生几乎是没有,好像有一种“即兴”学习的感觉,那也从另外一个方面反映了当前的中学生学习负担比较重,他们不但需要学习数学这一科,还要学很多的科目,那我们应该怎样来解决这个问题呢首先就是要减轻学生的负担,实行真正的素质教学.其次就是要从学生方面加以突破,因为时间都是自己挤出来的,那就需要我们老师教会学生解题的方法以提高学生的解题速度
三.小结
调查问卷主要反映出以下几个问题:
(1)相当多的一部分学生喜欢数学,觉得数学是有趣的一门学科,但是学起来觉得有一定的难度。
(2)相当多的学生不注重课本知识,课后少做习题,甚至不做习题。
(3)没有形成良好的学习数学的习惯,基本没有做到课前预习,课堂上认真听课,课后复习的学习三步曲。
(4)由于种种原因,学生上课听课的质量不高。
(5)学习数学的积极性不够高,效率不高。
(6)没有形成系统的学习习惯,不善于总结,归纳出一套自己的学习数学的方法。
(7)新课程标准的课本知识跳跃性大,习题难度大,内容多,学生难以消化吸收。
四、建议
针对目前数学学习现状,为了进一步提高学生的学习成绩,教师必须帮助学生完善学习过程。
(1)教师要指导学生进行预习,使他们养成每节新课前都要进行预习的习惯,从而了解下节课教师上课的内容提高听课效率。
(2)教师要指导学生采用科学的学习方法,提高学习效率。要培养学生课后先看书再完成作业的学习习惯,真正理解上节课老师所讲的内容,再运用掌握的知识去完成作业加以巩固,使每个学生都能自觉地采用科学的方法进行学习。
(3)教师要采用适当的方法提高学生学习的积极性、主动性,使学生做到对老师批改的作业要及时了解,对做错的题目要认真、及时订正。同时要培养学生养成严谨的学习态度,杜绝“治标不治本”的订正方法。对于学习中出现的问题要认真思考,决不轻易放过。
(4)教师要指导学生养成系统复习的学习习惯。只有这样,才能在各种测验中临危不惧,潇洒应对。靠临时“抱佛脚”去应付测验是无法真正提高学习成绩的。(5)教师要引导学生树立正确的学习动机,从思想上扭转部分学生的观念,帮助他们培养良好的学习动机,使他们能主动养成积极的学习。
(6)教师应探索新课程教学模式,积极稳妥推进新课程改革。
初中数学工作坊个人的研修总结范文篇8
自然数的分类包括了奇数和偶数,质数与合数、1和0。
自然数的分类
①按能否被2整除分
可分为奇数和偶数。
1、奇数:不能被2整除的数叫奇数。
2、偶数:能被2整除的数叫偶数。
注:0是偶数。(20__年国际数学协会规定,零为偶数.我国20__年也规定零为偶数。偶数可以被2整除,0照样可以,只不过得数依然是0而已)。
②按因数个数分
可分为质数、合数、1和0。
1、质数:只有1和它本身这两个因数的自然数叫做质数。也称作素数。
2、合数:除了1和它本身还有其它的因数的自然数叫做合数。
3、1:只有1个因数。它既不是质数也不是合数。
4、当然0不能计算因数,和1一样,也不是质数也不是合数。
备注:这里是因数不是约数。
同学们对于“0”,它是否包括在自然数之内存在争议,其实学术界目前关于这个问题尚无一致意见。
初中数学工作坊个人的研修总结范文篇9
角度制知识:用度(°)、分(′)、秒(″)来测量角的大小的制度叫做角度制。
角度制
角度制:规定周角的360分之一为1度的角,用度作为单位来度量角的单位制叫做角度制。
角度制中单位的换算。
角度制中,1°=60′,1′=60″,1′=(1/60)°,1″=(1/60)′。
角度制就是运用60进制的例子。
角度制中角度的运算。
两个角相加时,°与°相加,′与′相加,″与″相加,其中如果满60则进1。
两个角相减时,°与°相减,′与′相减,″与″相减,其中如果不够则从上一个单位退1当作60。
测量角的大小的另外一个方法,角度制与弧度制的换算。
主要把握180°=πrad这个关系式。
例如:1度=π/180弧度30度转换成弧度值:弧度=30*π/180终边相同的角的表示β=α+k360°k属于整数。
知识归纳:除了角度制可以测量角的大小,还有一种——弧度制也可以测量角的大小。
初中数学工作坊个人的研修总结范文篇10
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:
①在同一平面
②两条数轴
③互相垂直
④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向。
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成。
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成。
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
初中数学工作坊个人的研修总结范文篇11
1、图形的相似
相似多边形的对应边的比值相等,对应角相等;
两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;
相似比:相似多边形对应边的比值。
2、相似三角形
判定:
平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;
如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。
3相似三角形的周长和面积
相似三角形(多边形)的周长的比等于相似比;
相似三角形(多边形)的面积的比等于相似比的平方。