欢迎您访问高中作文网,请分享给你的朋友!

当前位置 : 首页 > 问答 > 教育知识

红、黑、白三种颜色的球各10个。把它们全部放人甲、乙两个袋子中,要求每个袋子

来源:网友 时间:2022-12-02 手机浏览

红、黑、白三种颜色的球各10个。把它们全部放人甲、乙两个袋子中,要求每个袋子

问题:

[单选]红、黑、白三种颜色的球各10个。把它们全部放人甲、乙两个袋子中,要求每个袋子里三种颜色的球都有,且甲、乙两个袋子中三种颜色的球数之积相等,那么共有()种放法?

A.25
B.27
C.29
D.30

参考答案:A

参考解析:

设甲袋中红、黑、白三种颜色的球的个数分别为x,y,z,则有1≤x,y,z≤9,且xyz=(10-x)(10-y)(10-z),即xyz=500-50(x+y+z)+5(xy+yz+xz),于是xyz能被5整除,因此x,y,z中必有一个取5。不妨设x=5,代入上面的等式可得y+z=10。此时,y可取1,2,…,8,9(相应地z取9,8,…,2,1),共9种放法。同理可得y=5,或者z=5时,也各有9种放法。但x=y=z时,两种放法重复。因此共有9x3-2=25种放法。