优化设计论文(6篇)
优化设计论文篇1
1施工组织设计与工程造价
施工组织设计是指导工程投标、签订承包合同、施工准备和施工全过程的技术经济文件。施工组织设计作为项目管理的规划性文件,提出工程施工中进度控制、质量控制、成本控制、安全控制、现场管理、各项生产要素管理的目标及技术组织措施。它既解决施工技术问题、指导施工全过程,同时又要考虑到经济效果。它不断在施工管理中发挥作用,而且在经营管理和提高经济效益上发挥着作用。每一项施工组织设计,都是保证工程顺利进行、确保工程质量、有效地控制工程造价的重要工具。
工程造价,即建筑安装工程的价格,从工程承包的角度出发,是指工程承包单位、施工企业按照承包合同约定,完成施工任务,业主应当付给的工程款即建筑安装工程价款。工程造价的确定,是以施工组织设计为依据,并综合考虑企业现有的人力资源、施工设备的配备情况、施工任务的饱满情况等诸多因素。合理地确定工程造价,有效地控制工程投资,尽量做到少投入、多产出,使有限的资源得到合理的运用,以尽量少的劳动消耗取得较高的经济效益。
2施工组织设计与工程造价相互确定的关系
施工组织设计与工程造价同等重要,但二者并非相互独立的,二者是密切联系,相互确定的关系。工程造价是由施工组织设计确定,工程造价的高低除了与预算知识有关外,其实很大程度上取决于施工方案的先进与否,不同的施工方案所反映的价格是不一样的。只有根据合理的施工方案和施工技术,才能做出正确的工程单价,确定的工程造价才合理。而工程造价的合理确定同样影响着施工方案的优化。要做出一个合理的施工方案,施工技术人员还必须借助于工程概预算知识,如在施工布置、设计合理而施工方案不同的情况下,除方案本身的优劣外,工程造价计算准确与否将直接影响施工方案的优选。笔者试就工程预算中基础单价与部分工程单价的确定,来探讨施工组织设计与工程造价之间相互确定的关系。
2.1基础单价
2.1.1材料预算单价
材料费一般占建安投资的60%左右。水利水电工程的外购材料如能选择合理的采购方案,将对保证施工进度、降低工程成本起到积极的作用。材料采购方案与运输方式的选择,必须以满足施工强度和有利于降低成本为原则,由施工组织设计分析比较确定。当材料采购方案一经确定,施工组织设计需进一步规划材料仓库的布置。材料仓库的布置以减少材料场内运输、减少材料场内二次转运,方便运输为原则。
2.1.2风、水、电预算单价
在充分理解招标文件、仔细勘察现场后,施工技术人员对工程的施工总布置就有了一个整体的规划,施工用电、水、风系统的整体布置就相应地确定下来。业主提供的高压电网接线点至现场各施工点最后一级接线点之间的电路布置,确定了施工用电的预算单价。施工用水价格的基本部分是基础水价。基础水价是根据施工组织设计所确定的高峰用水量所配备的供水系统设备,按台班产量分析计算的单位水量的价格。此价格与生产用水工艺要求及施工布置有关,如扬程高、水质需做沉淀处理等方案措施有关。施工用风可用固定式空压机或移动式空压机供给。根据预算单价的比较,前者单价低,后者单价高。但前者具有供风量大、可靠性高、成本低、易适应负荷变化的特点;后者具有机动灵活、管路短、损耗小、临建设施简单的特点。此时报价人员可建议施工技术人员在保证风压和风量的前提下可采用由多台固定式空压机组成的风厂为主,适量的移动式空压机为辅的集中供风方式。由此可以看出,在确定基础单价时,报价人员与技术人员需密切配合、不断沟通、及时交流、相互反馈信息。既有利于方案的优化,又有利于降低工程造价。
2.1.3砂石料单价
水利水电工程砂石料单价的高低,对工程造价有着较大影响,因此单价计算必须有可靠的地勘、试验资料。施工组织设计中对料场的规划、工艺流程的确定、加工系统的布置一定要合理、科学和先进。
2.2工程单价
水利水电概预算定额与施工组织设计是相互配套的,对于同一单项工程,如果采用不同施工方法,在概预算定额中就会有不同的人、材、机消耗与之呼应从而得出相应的项目单价。以土方工程为例,根据施工组织设计,选定土方开挖方法及运距,选用土方开挖机械设备的类型、容量及相配套的运输机械吨位,这些都确定后,即可套用相应的定额子目,从而算出土方开挖单价,在《水利水电建筑工程预算定额》(1986年版)土方工程中,不同容量挖掘机配备不同吨位的自卸汽车运输,单价是不相同的,这就需要工程预算的相关计算要看施工组织设计提供相关数据确定哪种方案比较经济合理,再结合施工企业机械设备装备情况,以提高机械的效率为目的选定最优的土方开挖施工方案。现以国内某一工程坝基土方开挖为例,分析比较不同的施工方法,产生不同的单价,分析可知相同容量的挖掘机配不同吨位的自卸汽车运土,吨位大的自卸汽车土方单价高;同样吨位的自卸汽车配不同容量的挖掘机运土,容量大的挖掘机土方单价低,这涉及到一个机械设备是否配套、机械效率高低的问题。施工组织设计根据工程工期进度、施工条件来配备施工机械,工程造价的相关计算又为优化施工组织设计提供可靠依据。
3优化施工组织设计对合理确定工程造价的意义
(1)保证施工组织设计的编制质量是合理确定工程造价的关键。施工组织设计编制质量的好坏是合理确定工程造价的关键,加强设计的编制质量对确定工程造价有很重要的作用。由于设计工作做得不够深入,对工程造价的确定带来很大的麻烦,同时也为合同的正常执行带来困难。因此,在施工组织设计的编制过程中,施工方案的选定不能简单地用行政命令的手段决定,而应当依靠集体的智慧,进行认真的比较讨论,从技术经济两个方面综合评定。
(2)优化施工组织设计是控制工程造价的基础。施工方案的设计是施工组织设计的中心环节,工程造价能否得到控制,首先取决于方案是否优良。在设计过程中,应对各种方案进行比较,在充分论证的基础上,从中选择最佳的设计方案。有时也可以博采众长,形成新的、更完善的方案。
(3)采用新技术、新工艺是降低工程造价的主要手段。在施工组织设计中应用新技术、新材料、新工艺、新设备,既可以提高生产力,又可以降低工程造价。比如:碾压混凝土筑坝,大体积混凝土通仓浇筑及用土工布、土工膜代替土石坝反滤料等新技术、新材料、新工艺,即可加快施工进度,节省材料消耗,减少设备数量,又可降低工程造价。在设计中,应大力应用先进的技术和设备,为降低成本提供主要手段。
4优化施工组织设计、合理确定工程造价的具体措施
优化施工组织设计、合理确定工程造价归根结底是工程造价管理的范畴,是经济与技术统一的管理过程。搞好施工组织设计是工程造价的一项重要内容,周密组织施工、施工方案优化、工期总进度计划安排、机械设备效率的提高、施工管理水平的提高从而使工程建设成本降低,所有这些都可以通过施工组织设计得以实现。具体的优化施工组织设计、合理确定工程造价的措施有:
(1)掌握准确的基础资料,熟悉定额涵盖的内容。
(2)要认真研究图纸及各种技术资料,对工程的每一部位都做到心中有数,在施工方案的确定时,应先比较施工方案的经济合理性,尽量选用较经济的施工方案,以达到控制施工造价的目的。
优化设计论文篇2
1.1轴向应力
生产管柱的轴向应力应该包括管柱的自重、井内钻井液的浮力、压力载荷、弯曲载荷、冲击载荷、温度载荷、管柱屈曲以及管柱摩阻等因素的共同作用。
1.2轴向应力弯曲载荷
当管柱发生弯曲时,由于狗腿度所产生的弯曲应力会产生附加的轴向力,计算中考虑了弯曲应力产生的附加轴向力的影响。
1.3三轴应力
当三轴应力超过屈服强度时,就会引起管柱屈服失效。三轴安全系数是材料屈服强度与三轴应力的比值,只是为了与单轴破坏准则(屈服强度)进行比较而设立的一个理论值。
2海上生产管柱结构设计实例分析
海上高温高压气井生产管柱需要满足气井全寿命周期内压力温度的变化,同时需重点分析高温高压气藏的应力敏感、井筒承压能力、现有海上施工工艺的成熟度、海洋作业环境以及后期修井措施等问题,确保施工作业的顺利进行、气井开发的安全高产。陆地高温高压气田常规射孔生产联作一趟下入的管柱形式能否满足海上气田生产和修井要求,还需进行进一步分析。以东方气田D2井为例,对一趟下入式和两趟下入式生产管柱分别进行了深入的分析。东方气田D2井的目的层为黄流组,压力因数1.50~1.93,地温梯度4.17℃/100m,完钻井深3358m,177.8mm(7in)尾管回接完井。
2.1井筒温度预测分析
利用Wellcat软件对洗井结束、开始生产、开始生产后关井、生产1a后、生产10a后这5种工况的井筒温度进行了预测和分析。由于地层与井筒和井筒内流体的传热作用,随着深度的增加,流体和井筒的温度是增加的,并最终趋向于井底的地层温度。开始生产时从井口到井底的温度变化是最小的,但是温度是最高的。生产10a后井口温度明显降低,这是由于长时间生产造成地层压力降低导致产量降低,并最终导致井口温度明显降低的显著原因。
2.2射孔生产联作一趟下入式生产管柱受力分析
D2井射孔联作一趟下入式生产管柱。基于以上5种工况下的井筒温度分布,利用Well-cat软件分别计算了初始状态、管柱下放、生产封隔器坐封、环空打压验封、过提、管柱内加压射孔、生产初期、稳定生产期、关井、油管掏空、油管泄漏等不同工况下生产管柱的受力情况。
2.3射孔生产联作两趟下入式生产管柱受力分析
考虑到气藏的高压特性和海上作业的安全风险,生产管柱若采用上部封隔器一道密封难以保证长期生产的井筒完整性,一旦封隔器密封失效,油套管环空连通,井筒全部充斥高压气,事故风险极高。所以,推荐D2井采用两趟下入式生产管柱,双封隔器坐封,形成两道环空屏障,保障井筒安全,管柱类型为射孔联作式生产管柱。第一趟管柱利用钻杆将射孔枪送入井底,送入到位后坐封顶部封隔器,脱手。第二趟下入生产管柱,下部插入密封,再投堵坐封生产封隔器,然后管柱内加压射孔。该管柱类型的主要特点是射孔管柱和生产管柱需要两趟下入工序,完井工期相对多,射孔作业后,射孔枪留在井内;但对于气井长期生产管柱设置双重密封,井筒安全更可靠。后期压力衰竭,上提上部生产管柱进行修井操作,简单易行。基于5种工况下的井筒温度分布,计算多种可能工况下生产管柱的受力情况。分析结果表明在各种工况条件下的生产管柱强度校核均可以满足设计要求。管柱内加压射孔工况下生产封隔器以上管柱受拉,以下生产管柱受压,两封隔器之间管柱受压最为严重,井口受拉最为严重。加压射孔时管柱强度安全系数大于临界安全系数,此时轴向安全系数为1.661,接近临界安全系数。因此在这一工况操作时,要严格注意封隔器有可能发生解封以及油管破坏的风险。
2.4环空密闭空间流体膨胀分析
D2井生产管柱上部采用油管携带式封隔器,下放至2651m;下部采用插入密封式封隔器,下放至2920m(两者之间相差269m)。这样出现了封隔器以上的油套环空和两个封隔器之间两个密闭区域。以下对环空密闭空间流体膨胀情况进行了分析。由环空密闭空间温度变化引起密闭压力变化结果:区域1(0~2651m),环形空间由于温度升高引起的圈闭压力为69.8MPa,可以在生产过程中通过井口放压控制压力;区域2(2651~2920m),密闭环空流体膨胀压力上升19.20MPa,通过强度校核,发现流体膨胀不会对油管及封隔器产生破坏。常规射孔生产联作一趟下入式管柱和两趟下入式生产管柱形式在不同工况条件下均能够满足海上气田开采要求,但考虑海上作业条件和风险承受能力,并结合后期井筒安全保障和修井作业难度,推荐海上高温高压气田采用射孔生产联作两趟下入式生产管柱。
3认识与建议
1)油管和井下工具应根据地层压力、流体性质及产能情况进行优化设计,满足井下温度和压力的要求,同时确保在高温高压的地质条件下满足生产的需要。在满足安全和工程需要前提下,高温高压气井尽量减少井下工具数量。
2)高温高压气藏采用生产射孔联作管柱,在采气井口安装到位后,管柱内加压射开地层,可以消除井筒作业过程中的井漏、喷、涌等风险,直接投产,减少了压井作业和诱喷程序。
优化设计论文篇3
离心压缩机中的静止叶栅(包括叶片扩压器,回流器等)作为气流能量转换的主要元件,其中亦不可避免的存在有效能量的损失。以单机离心压缩机为例,目前我国设计和生产的机器,其整机效率的期望值为83左右,但研究表明叶轮的效率则可高达90以上。由此可见,静止件中的能量损失导致整级效率下降7之多。对压缩机来说,这是一个可观的能量损失比例。长期以来,人们在对离心压缩机中的主要部件-叶轮大量精力进行研究的同时,对其配套的静止叶栅的研究却极为有限。随着对节能型压缩机日益增高的性能需要,人们不得不把目光逐步投向>!设计出具有最小能量损失的高效离心压缩机静止叶栅,是摆在离心压缩机研究者人们面前的一个越来越紧迫的任务。
近年来得到快速发展的遗传算法,是一类模拟达尔文自然进化论的仿生随机优化方法。遗传算法着眼于从一组(种群)潜在解(个体)中寻找问题的最好解。通过在这一组当前潜在解之间进行一定的遗传操作,如选择,杂交和变异,便有望产生更好的解。这一过程反复进行,直至找到一个可以被接受的解。遗传算法较之其它搜索技术具有许多优越性。这些优越性包括:1)鲁棒性。遗传算法在计算上简单,搜索有效,且无须对搜索空间附加限制性假定。2)固有并行性。遗传算法通过一组解,而非单个解进行搜索,因此具有固有的并行性。3)全局性。遗传算法在搜索过程中使用随机操作,可以探测更广的搜索空间,因而最有希望获得全局最优解。
本学位论文将遗传算法引入离心压缩机静止叶栅的优化设计,首次对遗传算法在这一领域内应用进行了深入而系统的发展和研究。论文的工作及所获得的结果广泛而有明确工程应用价值。主要工作有:
1.基于叶栅优化问题的复杂性考虑,首次对现有标准遗传算法进行了改进,以更有效求解这些问题。提出了三个改进型遗传算法,即对偶适应性遗传算法,方向进化遗传算法和概率二值搜索遗传算法。在对偶适应性遗传算法中,提出了一个待优化目标函数的对偶函数,将该对偶函数巧妙的结合进标准遗传算法,从而使遗传算法可以自适应地进行变异运算,提高算法获得全局最优解的能力。在方向进化遗传算法中,提出一个新的遗传算子,方向进化算子。该算子以个体的祖父代和父代的进化趋势指导子代的个体变异,可以使新解以最大概率在最优区域产生。在概率二值搜索遗传算法中,提出对个体基因二值位在遗传进化中的表现进行统计记录,以此记录为指导产生若干新鲜解补入种群,以改良种群质量。三个新算法与标准遗传进行的数值实验和设计实例对比显示了新算法对遗传算法收敛性的改进是十分可观的(参见Fan,Xi,Wang,InverseProblemsinEngineering,20__)。
2.论文首次系统提出静止叶栅遗传算法设计理论和设计模型(参见Fan,JournalofPowerandEnergy,Proc.Itn.Mech.Engrs,1998)。在设计模型中,以改进型遗传算法为基础,探索了气动叶栅设计中遗传算子的选取及运算规律,提出了适合遗传算法操作的叶栅个体参数化技术和相应的基因编码方法。与此同时,在设计模型中,还尝试将遗传算法与人工神经网络进行结合,提出在遗传算法叶栅设计方法中加入一个前馈人工神经网络策略,用于完成对已知叶片形状的流动分析,从而减少算法中实际CFD分析程序计算个体适应值的时间,缩短遗传算法进化周期。另外,首次提出直接受用前馈人工神经网络在遗传算法的训练和演化下完成叶栅气动设计任务的方法。所提出的遗传算法设计模型均具有广泛的通用性,可以与任何层次的CFD流场分析程序结合。可以对气动叶栅进行任意命题下的自动设计,既可以对叶栅进行传统意义上的正命题设计和逆命题设计,也可以实现叶栅的混合命题设计。
3.传统的离心压缩机叶轮及其它气动元件均为单点设计,即按一个给定工况点设计。如此设计出的元件在设计工况点附近尚能较好工作,但当实际运行工况偏离设计工况时,元件的性能就会急剧恶化。论文将航空机翼中多点设计的思想首次引入离心压缩机叶栅的气动设计当中,欲通过以元件的两个或更多个希望的运行工况点作为给定设计点,设计出在各个设计点之间均能较好工作的折中(trade-off)最优化叶栅。论文首次提出气动叶栅多点设计问题的数学描述。对叶栅多点设计问题,提出三个有效获取问题Pareto解集的遗传算法方法求解策略,即全局适应值竞赛策略,双枝竞赛策略和Pareto占优竞赛策略。所提出的遗传算法多点设计方法得到扩压叶栅设计实例的实验验证(参见Fan,Xi,Wang,JournalofPowerandEnergy,Proc.Itn.Mech.Engrs,20__,Fan,Xi,Wang,ChineseJournalofMechanicalEngineering,20__)。
4.遗传算法在叶栅形状优化上的成功应用激励作者尝试用该方法进行叶栅流场的数值分析。论文研究和探讨了生物进行系统与守恒定律支配的非生物物理系统的相似性。基于这些相似性,提出了一个求解流场问题的初步的“遗传算法类”CFD方法。该方法以流场的解作为遗传进化个体,以候选解满足守流体守恒性(如质量守恒,能量守恒等)的误差作为其适应性的度量,通过遗传算法对流场进行求解。初步探讨了守恒性误差的求解方法所得结果令人鼓舞,它初步显示,遗传算法具有进行叶栅流场分析的巨大潜力。以此为起种类(参见Fan,Lu,Xu,EngineeringComputation,20__)。
关键词:遗传算法,优化,离心压缩机,叶栅,神经网络
StudyofEvolutionary-Computation-BasedMethodsAliedto
DesignofStationaryCircularCascadesinCentrifugalCompreors
ATRACT
Incentrifugalcompreors,stationarycascades,generallyincludingbladeddiffusersandreturningchael,arethekeypartsforgaseousenergytraformation.Itisinevitablethattheenergylooccursintheseparts.Forexample,theexpectedaerodynamicefficiencyofthesinglestagecompreorsthatarecurrentlyproducedinChinaisabout83.Butstudieshavedemotratedthattheimpellers’efficiencycanreachuptomorethan90.Thisimpliesthattheenergylointhestationarypartsreducesthemachines’totalefficiencymorethan7.Thisisacoiderableproportionoftheenergylotocompreors.However,foralongtimeperiod,researchershavemademostpartoftheireffortsonstudyinghowtoimprovethemostimportantparts,theimpellers,ofthecompreors,whilestudiestothestationarypartsareverylimited.Sincetherequirementsoftheimprovementontheperformancesoftheenergy-savingcompreorsarealwayscontinued,theresearchershavenochoicebuttoturntheirsighttothestationaryparts,expectingtofindnewenergy-savingpoibilitiessoastoincreasethetotalmachines’efficiencyfurther.Coequently,howtodesignthehighefficientstationarypartsthatcanhaveaminimumenergyloisanurgenttaskfacedbytheresearchersofcentrifugalcompreors.
Geneticalgorithms(GAs),rapidlydevelopedinrecentyears,areregardedasstochasticsearchtechniquesthatmimicnaturalselectionandDarwin’smainprinciple:survivalofthefittest.GAsaimtofinethebestsolutiotoaproblembygeneratingacollection(“population”)ofpotentialsolutio(“individual”).Bettersolutioarehopefullygeneratedthroughcertaingeneticoperatiosuchasselection,crooverandmutationfromthecurrentsetofpotentialsolutio.Theproceisrepeateduntilanacceptablesolutionisfound.GAsHavemanyadvantagesoverothersearchtechniques.Theseinclude:1)Robustne,GAsarecomputationallysimpleandpowerfulinthesearchforimprovementandhavenolimitationonthesearchace.2)Intriicparallelism,GAscarryoutsearchthroughpopulatioofpoints,notsinglepoint,whichmakesthemintriicallyparallel.3)Globalproperty,GAsuserandomoperationintheirevolutionproceesthatallowawiderexplorationofthesearchace,andhenceitislikelythattheexpectedGAsolutionmaybyglobaloptimum.
Thisdiertationaimsatintroductionofgeneticalgorithmsintothedesignofthestationary
cascadesofcentrifugalcompreors.Somegooddevelopmentsandsystematicstudiesarefirstcarriedoutinalicationofgeneticalgorithmstothisarea.Theresearchesandtherelatingresultsobtainedinthediertationarebroadandpracticalinengineeringaellatio.Themajorworksinclude:
1.Basedonthecoiderationofcomplexitiesfromtheoptimizationproblemsoftheaerodynamiccascades,theexitingstandardgeneticalgorithmisimprovedinordertouseittosolvethecascadeoptimizationproblemsmoreefficiently.Threemodifiedgeneticalgorithms,namely,dualfitnegeneticalgorithm,directionevolutionarygeneticalgorithmandprobabilitybinarysearchgeneticalgorithm,areproposed.Inthedualfitnegeneticalgorithm,adualfunctionoftheobjectivefunctionoptimizedispresented.Thedualfunctionisthenembeddedintothestandardgeneticinordertomakethemutationoperationbeingperformedadaptivelywithdifferentprobabilitiesandsoastomakethealgorithmhavinghighergloballysearchingability.Inthedirectionevolutionarygeneticalgorithm,anewgeneticoperator,directionevolutionaryoperator,isproposed,thisoperatordirectsmutationoperatioofachildindividualaccordingtotheevolutiontendencyofitsgrandparentandparentindividuals.Withthemutationoperation,theindividualcanbeyieldedinanoptimumregionwithahighprobability.Intheprobabilitybinarysearchgeneticalgorithm,thebehaviourofthebinarycomponentsateachallelelocatioofachromosomearestatisticallyrecordedandareusedtoproduceasetoffreshsolutiothatareaddedintoapopulation,sothattoimprovethequalityofthepopulation.Thenumericalsimulationandpracticaldesignexamplesshowthatthethreenovelgeneticalgorithmshavemuchbetterconvergenceabilitiesthanthestandardgeneticalgorithm(seeFan,Xi,Wang,InverseProblemsinEngineering,20__,).
2.Thegenetic-algorithm-baseddesignprinciplesandmodelsarefirstsystematicallyestablished(seeFan,JournalofPowerandEnergy,Proc.Itn.Mech.Engrs,1998).Inthegenetic-baseddesignmodels,basedontheimprovedgeneticalgorithms,thetuningandoperationpatterofthegeneticoperatorsinadesignoftheaerodynamiccascadesareexplored.Someparameterizatioandtheircorreondingcodingmethodsforaerodynamiccascadesregardingtotheoperatioofgeneticalgorithmsarepresented.Inthemeanwhile,intheproposeddesignmodels,incorporatinggeneticalgorithmsandartificialneuralnetworksisattemptedtosolvecascadedesignproblems.Inthiscase,agenetic-algorithm-baseddesignmethodisembeddedwithafeedforwardartificialneuralnetworkthatisusedtocomputetheflowcharactersofgivebladeprofiles.Astheresult,thefitnecomputationaltimecanbereduced,andfurtherthealgorithm’sevolvingepochcanbeshortened.Moreover,thefeedforwardartificialneuralnetworksarefirstuseddirectlytocompleteacascadeaerodynamicdesigntask,withthegeneticalgorithmsbeingusedtotrainandevolvethenetwork.Allthegenetic-baseddesignmodelsestablishedpoewidegeneralities.TheycanincorporatewithanydegreeCFDsolvers.Theycanimplementautomaticdesigofanaerodynamiccascadeinanyrequireddesig,i.e.,aconventionaldirectdesignorinversedesign,andahybriddesign.
优化设计论文篇4
1.1系统用户界面层
系统用户界面层相当于是整个系统的窗门,在该层面的用户可以通过相关操作对整个系统的运行进行控制。同时,系统也会将自身的运行情况和数据信息通过窗口的形式展现给用户,使用户能够对整个系统的运行情况进行详细了解,进而确保整个系统的高效、精确运行。
1.2系统应用服务层
在该层,用户可以对整个系统的具体运行情况和操作进行控制,进而实现对风电机组塔架进行快速设计,并对设计进行进一步优化。在该层面,对Pro/E5.0软件系统的交互集成,主要是通过Pro/ToolkitAPI来实现。
1.3系统数据存储层
在整个优化设计系统中,数据存储层是最重要的组层部分,是整个系统得以实现运行和操作的基础。数据存储层的主要作用,就是对系统运行过程中的相关数据进行存储。按照存储数据的不同,可以将整个数据存储层细分为四个数据库,分别是参数库、实例库、规则库以及模板库。
1.3.1参数库
参数库,顾名思义,其主要作用就是对风电机组塔架的设计参数进行存储,其中,主要包括风电机组本身的技术参数、塔架设计的基本参数、塔架材料参数、零部件几何参数以及塔架设计优化参数等。
1.3.2规则库
规则库所存储的主要是风电机组塔架优化设计中的装配约束关系,而这些装配约束关系数据,都是以固定的规则格式存储在规则库中,当系统运行需要时,直接对其进行调用。
1.3.3实例库
该数据库内存储的主要是已经设计成功的风电机组塔架设计优化案例,详细包括了整个塔架设计过程中所涉及到的相关数据、规则以及零部件配置信息等,主要作用是为了给风电机组塔架设计优化提供可供参考的设计依据。
1.3.4模板库
该数据库的主要作用是对塔架优化设计的模板文件进行存储,通过这些模板文件能够直接对塔架的整体骨架进行快速组装和设计。而这些模板文件都存储在指定目录之下,当系统设计需要时可以直接通过目录进行调用。
2风电机组塔架优化设计系统功能分析
2.1结构配置模块
首先,设计人员要在对风电机组塔架设计具体需求的基础上,对整个风电机组塔架的总体结构进行初步设计,并由企业管理人员对初步设计方案进行审查,确定设计方案满足要求之后存储方案继续进行下一设计环节。其次,在完成塔架总体结构设计之后,设计人员应该在塔架总体结构初步设计的基础上对整个塔架的零部件进行选择,同时,为了确保选择的合理性,设计人员应该从现有结构模型中进行选择,以确定所选零部件的性能属性能够满足塔架优化设计要求,确定没有问题之后,、对零部件选择方案进行存储。在此过程中设计人员还应该注意,不论是在接下来的设计中发现塔架总体结构设计中出现问题,还是企业要对塔架设计进行适当调整,设计人员都应该在原有设计方案之下对塔架的总体设计进行调整和修改,并将修改之后的方案进行存储。
2.2分析优化模块
该功能模块的主要作用是对塔架总体结构的设计进行分析,并对分析结果进行优化处理。在该功能模块,设计者需要先从结构配置模块中取出塔架总体结构设计的主要数据,并针对结构数据对初始参数进行准确设定。然后,再利用有限元分析软件建立起有限元分析模型,病通过求解器对塔架总体结构的静态强度和模拟形态进行详细计算和分析,得出优化结果。最后,根据优化结果对塔架总体结构进行优化设计,并再次将优化结果存储。
2.3参数化设计模块
在通过以上两个模块对整个风电机组塔架总体设计进行确定之后,就需要通过参数化设计模块对塔架总体结构的相关设计参数进行提出分析和构建零件三维模型。通过参数化设计模块,设计人员可以在对塔架总体设计结构的相关参数进行提出之后,利用Pro/E二次开发接口将所得参数层输送到参数化程序中,由该程序对整个塔架的总体结构进行计算分析和参数化,然后生成塔架零件的三维模型,为塔架零件的选择和构造提供科学有效的参考依据。
2.4设计输出模块
设计输出模块的主要作用是将确定整体设计塔架的结构转化成二维工程图进行输出,附带详细的总体结构图、部件图和零件图,并注明详细尺寸和材料具体要求,以确保整个塔架优化设计的顺利实现。
3结束语
优化设计论文篇5
多级物流网络配送过程所引发的碳排放量,主要是由物流配送过程中所消耗的各种能源和物质所带来的二氧化碳排放.本文用配送过程中石油燃料的消耗量来计算二氧化碳排放量,其值为燃料消耗量与CO2排放系数的乘积.运输过程中的燃料消耗量,不仅与载货量有关,还与运输距离等因素有关.文献[8]通过收集相关数据进行回归分析,结果表明,单位距离石油燃料的消耗量φ可表示为依赖于配送车辆载货量X的线性函数。(6)式中:t0为单位碳排放费用;e0为石油燃料的CO2排放系数;φ(Xkij)为单位距离石油燃料消耗量;ckij为第k层节点i至第k+1层节点j的距离.当t0=0时,配送过程中碳排放成本为零,表示不考虑碳排放带来的成本.13变量描述以及条件假设本文中变量描述如下:K表示多级物流网络的层数;Wk表示第k层物流节点的数目(单位:个);vi表示最终用户i对产品的需求量(单位:件);bki表示第k层第i个节点对产品的最大处理量(单位:件);xkij和Skij分别表示将产品从第k层的第i个物流节点送至第k+1层的第j个节点(或最终用户)的产品数量(单位:件)和单位运输费用(单位:元);Gki表示通过第k层第i个物流节点的产品数量(单位:件);Eki和Uki分别表示第k层第i个物流节点的固定运营费用(单位:元)和对产品的单位处理费用(单位:元).引入两个01变量,即Zki为1表示使用第k层第i个物流节点,否则为0;Ykij为1表示第k+1层节点j对产品的需求由第k层上的节点i满足,否则为0.模型的建立是基于如下假设:1)企业的多级物流网络已建成且完全可以实现运输需求;2)待优化网络是由工厂、多级配送节点和多用户组成的物流配送网络;3)一个配送节点可以为多个用户服务,但是一个用户只接受一个配送节点的服务;4)多级物流网络上的配送节点可以根据运送商品数量的多少而处于关闭或打开状态;5)由厂商到配送中心的运输成本以及由配送中心到客户的配送成本均为线性函数;6)不考虑时间要求以及配送车辆数量限制的问题.14低碳多级物流网络优化模型低碳物流配送网络设计中,要考虑的费用主要包括配送过程的碳排放成本、节点的固定运营费用、节点对产品的单位处理费用以及运输费用.固定运营费用与通过节点的商品数量无关,主要包括节点的折旧费和节点职工的固定月工资等。优化模型的目标函数式(8)是碳排放约束下最小化系统的总费用,包括碳排放成本、运营费用、产品处理费用以及运输费用;约束式(9)表示中间节点上的流量守恒;约束式(10)表示不同层级各节点上的流量守恒约束;约束式(11)表示物流节点的能力限制,即对于任一中间物流节点,经过其上的所有商品量,均不能超过其本身对商品的最大处理量;约束式(12)保证从节点送至最终客户的产品数量等于该用户的实际需求量;约束式(13)保证每一个客户只接受一个物流节点的服务;约束式(14)表示各变量的非负约束.
2模型求解
一般利用比较多的智能优化算法包括克隆选择算法、粒子群算法、蚁群算法、模拟退火算法和遗传算法等.这些算法求解机制各不相同,在不同的问题上表现的性能也不同.遗传算法的主要特点为随机性和自适应性,并且运算时高度并行,可以直接在结构上进行计算,且不必担心函数在连续性方面的限制.相比于其他算法,遗传算法具有更好的全局优化能力,可以自动优化寻优空间,适合于解决较大规模的优化组合问题.遗传算法是一种自适应全局优化搜索算法,使用二进制遗传编码,其繁殖分为交叉与变异两个独立的步骤进行,基本执行过程如下:1)初始化.确定种群规模M、交叉概率Pc、变异概率Pn和终止进化准则;随机生成M个个体作为初始种群X(0);设置进化代数计数器t0.2)个体评价.计算或估计X(t)中各个体的适应度.3)种群进化.①选择.从X(t)中运用选择算子选择出N/2对母体(N≥M).②交叉.对所选择的N/2对母体,依概率Pc执行交叉形成N个中间个体.③变异.对N个中间个体进行分别独立,依概率Pn执行变异,形成N个候选个体.④选择(子代).从上述所形成的N个候选个体中依适应度选择出M个个体组成新一代种群X(t+1).4)终止检验.如已满足终止准则,则输出X(t+1)中具有最大适应度的个体作为最优解,终止计算;否则置tt+1并转步骤3)继续执行.
3算例分析
算例中已经确定的物流网络的层级数K=4,第一层为企业的工厂,中间各层的节点的数目分别为W2=3,W3=6,最终用户数目W4=9.假设CO2排放系数e0=255kg/L,车辆最大载重量为2000件,车辆满载与空载时单位距离燃料消耗量分别为ρ=2L/km和ρ0=1L/km.客户的需求量、中间节点的最大处理量和中间节点的固定运营成本,以及各地之间的单位运费与距离分别如表1~9所示.根据模型求解,分别假设单位碳排放费用t0为0、02、06和10元时,对比考虑碳排放成本和不考虑碳排放成本时多级物流网络优化结果,结果如表10所示.表10中,1代表启用该节点,0代表不启用该节点,Z2表示第二层节点,Z3表示第三层节点.31不考虑碳排放成本求解当不考虑碳排放成本(即t0=0)时,是传统的物流网络优化结构,第二层启用1和3节点,关闭2节点;第三层启用1、2、3、4节点,关闭5、6节点.节点1分别为客户1、2、5、9服务,节点2为客户3、7服务,节点3为客户4服务,节点4为客户6、8服务.32考虑碳排放成本求解当考虑碳排放成本时(即t0≠0)时,分别从4组不同的情况进行分析:当t0=02元时,第二层启用1和3节点,关闭2节点;第三层启用1、3、4、5节点,关闭2、6节点.节点1分别为客户1、4、6、9服务,节点3为客户2、5服务,节点4为客户3、7服务,节点5为客户8服务.当t0=06元时,第二层启用2节点,关闭1、3节点;第三层启用1、2、4节点,关闭3、5、6节点.节点1分别为客户2、3、9服务,节点2为客户1、4、5、7服务,节点4为客户6、8服务.当t0=10元时,第二层启用2节点,关闭1、3节点;第三层启用1、2、5节点,关闭2、6节点.节点1分别为客户1、2、6、9服务,节点2为客户3、4、7服务,节点5为客户5、8服务.对比t0=0元和t0=02元的情况,二者的优化方案基本一致,都是开设第二层的1、3节点,这是因为当t0=02元时,虽然在物流网络的总成本中计入了运输过程中的碳排放成本,由于碳排放成本在总成本中所占的比例比较低,因此,对物流网络的优化方案基本不会造成影响.当t0分别为06和1元时,第二层开设了费用较高的物流节点2.这是因为在优化模型中,碳排放成本对总成本的影响增大,优化方案开始发生变化,选择了第二层节点中开设费用较大但运输距离较近的2节点,降低了碳排放成本,从而达到降低整个物流成本的目的.随着全球环境恶化,国家对碳排放控制更加严格,碳排放成本对物流网络结构的影响程度将逐渐增大,当碳排放费用提高到很大数额时,在企业的多级物流网络中,碳排放成本较高的节点将被舍弃,产品运输方式也会向碳排放成本低的方式转变,多级物流网络优化设计方案均因加入碳排放成本因素而发生变化.
4结论
优化设计论文篇6
该工程是集客房、餐饮、宴会、会议办公为一体的多层公共建筑,地下一层、地上五层,建筑体总高度22.46米,总建筑面积13735平方米。本建筑各层平面主要功能为:地下1层为厨房、库房及设备用房等,首层为餐饮、会议功能,二层~四层为客房层,五层为设备层。该工程的酒店级别定为五星级标准。
2空调系统设计
2.1冷热源设计
该工程空调计算冷负荷为1058kW,计算热负荷为423kW。由于该项目的功能特性决定了其空调设备同时开启的情况极少,故在冷热源装机容量的选择上取同时使用系数为较小值,制冷时的同时使用系数约为0.8,制热时约为0.6。由此,该工程选用了2台60冷吨(211kW)的螺杆式水冷冷水机组(其中有1台为热回收型机组)、1台120冷吨(422kW)热回收型螺杆式水冷冷水机组作为冷源,集中放置于地下一层空调主机房。热源选用2台额定制热量为130kW模块式风冷热泵机组作为热源,同时该风冷热泵机组可兼作过渡季节或夜间的极低负荷以及高峰负荷时的冷源。冷源系统的冷却塔及风冷模块式热泵机组放置于二层露天平台处,水泵则统一置于地下一层主机房内,方便集中统一管理。如图1所示为空调冷热源系统流程图。
2.2空调水系统设计
结合本工程业主方的要求及整体管理水平,该空调水系统以方便有效的管理为原则,以合理的节能运行为目的进行设计。空调水系统采用分区两管制,按照建筑功能,分为客房区域、餐饮区域及办公会议区域。各区供冷/供热转换在主机房内分集水缸的各环路总管上设手动蝶阀实现手动切换。空调冷却水、冷冻水、供暖热水系统均为水泵与主机一对一的一次泵定流量系统。冷冻水/冷却水/供暖水系统均采用二管制异程式系统。冷冻水供回水温度为7℃/12℃;冷却水供回水温度为32℃/37℃;供热系统供回水温度为45℃/40℃。
2.3热回收系统设计
为了降低能耗,酒店建筑一般需要设计空调热回收系统,利用回收其冷水机组的冷凝热来获得免费的生活热水,而广东地区明确规定采用集中空调系统的大面积酒店建筑应当配套设计和建设空调废热回收利用装置[1]。本工程空调热回收系统分别由1台制冷量为60RT(211kW)的热回收型螺杆式冷水机组和1台制冷量为120RT(422kW)的热回收型螺杆式冷水机组、2台热回收循环水泵以及2个梯级蓄热水罐组成。空调热回收热水系统主要为该工程的客房区及厨房区提供生活热水,同时综合考虑了热水管网的回水加热循环。空调热回收系统的设计热水供/回水温度为60℃/35℃。如图2、图3所示分别为冷凝热回收系统流程图(空调主机侧)及冷凝热回收系统流程图(水专业侧)。
3系统节能性分析
3.1冷源系统节能分析该空调系统的冷源具有大小主机搭配、并且与风冷热泵机组互为备用,基本可以满足该项目的各种不同运行工况,同时有效避免了冷源容量配置过大,可降低初投资成本,其运行也比较节能。
3.2空调水系统节能分析空调水系统根据项目特点设计为分区两管制系统,实现客房区及餐厅区不同时段冷热负荷需求,在满足实际需求的同时运行更加节能。冷冻水泵、冷却水泵及热水泵与主机采用一对一的连接方式,以达到合理的流量分配及稳定的运行效果,同时采用定流量系统运行,减少了系统控制的复杂性,运行更加可靠,但是系统节能性相对变流量系统会差一些。
3.3热回收系统节能分析
3.3.1热回收的基本原理本工程的空调热回收系统采用了回收冷水机组的冷凝热。冷水机组冷凝热回收系统就是把制冷循环中制冷工质冷凝放热过程释放的热量利用来制备生活热水。所示为冷水机组排气热回收系统原理图。由文献[2]及相关厂家的实际测试数据可知,标准测试条件下(热水供回水温度一般为55℃/30℃)冷水机组的显热回收量约为制冷量的12.5%~15%范围内,很多时候可按照15%计算。当热水的供回水工况与测试工况不一致时则需根据实际情况分析,具体方法可按照文献的分析方法计算得出总热回收量。
3.3.2热回收系统设计分析由于传统热回收系统存在一系列的问题,故本文在文献的热回收系统基础上进行了以下几点的优化设计。
(1)为了减少热水罐的蓄水时间以及为了避免进水温度对主机性能系数产生较大的影响,设计工况下的进出水温度为35℃/60℃,温差25℃。
(2)蓄热水罐采用立式水罐,更好的实现了水温分层作用及热水的梯级利用。
(3)本工程的热回收系统考虑了热水管网的回水加热循环,更加充分地利用了冷水机组的冷凝热,更加节能。
(4)控制方面,在热回收系统的回水管上设置温度传感器,当回水温度超过58℃时,输出信号关闭热回收水泵,同时在用水点最远段的回水管上设置温度传感器,当回水温度低于55℃时,输出信号开启水专业的回水循环水泵。按照一台120RT(422kW)的热回收机组来分析,由文献]的计算方法可得,该热回收机组的显热回收量为63.3kW,热回收水流量为2.47m3/h,从而根据此水流量及25℃的设计供回水温差即可求出总热回收量为71.8kW,热回收系统设计的总热回收量为制冷量的17%左右。由此可知,供回水温差越大,同等制冷量的情况下的热回收量就越大,但相应的对冷水机组的性能系数影响也就越大。由以上分析可知,热回收系统的实际供回水工况是一直在不断变化的,其热回收量也是一个变数,严格来说分析一个工况范围内的热回收量才更有参考价值,这部分还有待于下一步做更详细的分析计算。
4总结