高分子材料的性能(6篇)
高分子材料的性能篇1
【关键词】宽带半导体材料电子机构性质
Ⅱ-Ⅲ2-Ⅳ4型三元化合物,为具有缺陷黄铜矿结构的宽带半导体材料,材料电子机构优化性强,弹性以及光学性质好,用于光学设备乃至电光器件等的制造中,在提高设备性能方面,价值显著。本文以密度泛函理论为基础,对缺陷黄铜矿结构半导体CdAl2S4的电子机构、弹性及光学性质进行了分析:
1宽带半导体材料模拟计算方法
以密度泛函理论为基础进行模拟计算。将CdAl2S4拆分开来,分为Cd、Al以及S三个部分,三者的价电子组态存在一定差异,Cd电子组态为4d105s2、Al电子组态为3s23p2、S电子组态为3s23p4。电子与电子之间存在的交换关联势,以PBE泛函作为基础进行描述。参数设计情况如表1。
从表1中可以看出,半导体材料参数如下:
(1)动能截断值:500eV。
(2)布里渊区k点网格8×8×4。
(3)原子作用收敛标准:10-3eV/A。
(4)自洽精度:10-6eV/atom。
2宽带半导体材料的电子机构与性质
2.1宽带半导体材料的电子机构
从晶格结构、能带结构方面,对宽带半体材料CdAl2S4的电子机构进行了研究:
2.1.1晶格结构
宽带半导体材料CdAl2S4的原子中,不同原子的空间占位不同,具体如表2。
考虑不同原子在空间占位方面存在的差异,应首先采用晶格优化的方法,提高材料结构本身的稳定性,CdAl2S4的晶格结构参数以及键长如下:Cd-S键长2.577、Al1-S键长2.279、Al2-S键长2.272。a实验值2.553,计算值5.648。
2.1.2能带结构
宽带半导体材料CdAl2S4的能带结构如图1。
图1显示,宽带半导体材料CdAl2S4的价带主要由三部分所构成,分别为低价带、高价带与最高价带:
(1)低价带:低价带即能量最低的价带,包括S的s态以及Al的s态等部分,通过对半导体材料CdAl2S4的低价带的观察可以发现,S与Al两者中所包含的原则,具有较高的结合性质。
(2)高价带:与低价带相比,高价带的能量相对较高,判断与Cd原子有关。观察图1可以看出,半导体材料CdAl2S4高价带Cd-d态的局域性较强。
(3)最高价带:最高价带的能量最高,一般在-5.4-0eV之间,该价带包括上下两部分,两部分所包含的能态各不相同。以导带部分为例,其能态一般在3.395eV-6.5eV之间。
2.2宽带半导体材料的性质
从弹性性质、光学性质两方面,对宽带半导体材料CdAl2S4的性质进行了分析:
2.2.1弹性性质
晶体相邻原子的成键性质等,与弹性性质存在联系。从宽带半导体材料CdAl2S4的各向异性因子,该材料的弹性性质呈现各向异性的特点。
宽带半导体材料CdAl2S4的延展性与脆性,与弹性同样存在联系,简单的讲,材料的延展性与弹性呈正相关,材料脆性与弹性,则呈负相关。通常情况下,材料的延展性与脆性如何,可以采用体模量与剪切模量之间的比值来确定,当两者之间的比值在1.75以下时,说明材料的延展性较差,脆性较强,弹性性质较差。相反,当两者之间的比值在1.75以上时,则说明材料的延展性较强,脆性较弱,弹性性质较强。
通过对宽带半导体材料CdAl2S4体模量与剪切模量之间的比值的计算可以发现,比值为1.876,较1.75大,可以认为,该材料的延展性较强,脆性较弱,弹性性质较强。
2.2.2光学性质
半导体材料的光学性质,属于其物理性质中极其重要的一方面,在光学仪器等的研制过程中,对半导体材料的光学性质十分重视。宽带半导体材料CdAl2S4的本质来看,该材料晶体为四方晶系单光轴晶体,各向异性显著。
将光谱能量确定为0-20eV,对材料的光学性质进行了研究,发现半导体材料CdAl2S4的光子能量在3.5eV以下以及12.5eV以上的区域,而不存在在两者之间,可以认为,该材料晶体的光学性质具有各向异性。另外,研究显示,该材料的反射系数可达到0.85,强放射峰在紫外区域,可以认为,宽带半导体材料CdAl2S4具有紫外探测以及紫外屏蔽的光学性质。
3讨论
宽带半导体材料CdAl2S4电子机构相对稳定,延展性较强,脆性较弱,弹性性质较强,具有紫外探测以及紫外屏蔽的光学性质。未来,应对宽带半导体材料的性质进行进一步的研究,以开发出该材料的更多功能,确保其价值能够得到更好的发挥。
4结论
鉴于宽带半导体材料CdAl2S4在电子机构以及弹性性质和光学性质方面存在的特点及优势,可以将其应用到紫外探测以及紫外屏蔽等材料的研制过程中,使之优势能够得到充分的发挥,为社会各领域的发展发挥价值。
参考文献
[1]张丽丽,马淑红,焦照勇.宽带隙半导体CdAl_2S_4电子结构、弹性和光学性质的研究[J].原子与分子物理学报,2016(02):357-361.
[2]陈芳,魏志鹏,刘国军,唐吉龙,房丹,方铉,高娴,赵海峰,王双鹏.扫描近场光学显微技术在半导体材料表征领域应用的研究进展[J].材料导报,2014(23):28-33.
[3]冯琳琳,顾鹏程,姚奕帆,董焕丽,胡文平.高迁移率聚合物半导体材料[J].科学通报,2015(23):2169-2189.
高分子材料的性能篇2
论文摘要:高分子化学是研究高分子化合物的合成、化学反应、物理化学、物理、加工成型、应用等方面的一门新兴的综合性学科。那么,高分子化学具体内容及高分子与生活、高科技的发展关系如何呢?以下作简单介绍。
人类从一开始即与高分子有密切关系,自然界的动植物包括人体本身,就是以高分子为主要成分而构成的,这些高分子早已被用作原料来制造生产工具和生活资料。人类的主要食物如淀粉、蛋白质等,也都是高分子。只是到了工业上大量合成高分子并得到重要应用以后,这些人工合成的化合物,才取得高分子化合物这个名称。但提到合成高分子材料(聚合物)的应用与发展,人们在想到它们极大地方便我们的生活的同时,很多人会想到“白色污染”,甚至将水污染、大气污染等各种环境问题的产生怪罪于高分子,这说明他们对高分子并不十分了解。当今社会高分子的功用无处不在,而人们认识高分子时,往往忽略了它带给人类生活的巨大变化和种种利益,不了解它为人类文明做出的贡献是巨大的。
一、高分子化学的内涵
1.何为高分子化学
顾名思义,高分子就是相对分子质量很高的分子,它是高分子化合物的简称。高分子化合物,又称聚合物或高聚物,是结构上由重复单元(低分子化合物—单体)连接而成的高相对分子质量化合物。高分子的相对分子质量非常的大,小到几千,大到几百万、上千万的都有。我们有时将相对分子质量较低的高分子化合物叫低聚物。高分子化学作为化学的一个分支,同样也是从事制造和研究分子的科学,但其制造和研究的对象都是大分子,即由若干个原子按一定规律重复地连接成具有成千上万甚至上百万质量的、最大伸直长度可达毫米量级的长链分子,称为高分子、大分子或聚合物。
2.高相对分子质量与高强度
相对分子质量和物质的性质是密切相关的,是决定物质性质的一个重要因素。只有相对分子质量高的化合物才有一定的机械力学性能,才能作为材料使用。例如乙烷、辛烷、廿烷、聚乙烯、超高分子量聚乙烯,都是直链的烷烃化合物,但是分子量变化很大,其机械力学性能因而也有极大的区别。
3.高分子科学的主要内容
既然高分子化学是制造和研究大分子的科学,对大分子的反应和方法的研究,显然是高分子化学最基本的研究内容。高分子科学不仅是研究化学问题,也是一门系统的科学。高分子科学的主要内容有:如何将低分子化合物连
接成高分子化合物,即聚合反应的研究。高分子化合物的结构与性质关系。不同性质的高分子,其结构必然是不同的。为了得到不同性质的高分子,就要去合成具有特殊结构的高分子。
二、高分子材料化学的应用
材料是人类社会文明发展阶段的标志,是人类赖以生存和发展的物质基础。它是指经过某种加工,具有一定结构、组分和性能,并可应用于一定用途的物质。上世纪半导体硅、高集成芯片、高分子材料的出现和广泛应用,把人类由工业社会推向信息和知识经济社会。可以说某一种新材料的问世及其应用,往往会引起人类社会的重大变革,材料是人类文明的重要标志。如果说现在人人离不开高分子材料,家家离不开高分子材料,处处离不开高分子材料,是一点也不过分的。高分子化合物的最主要的应用是以高分子材料的形式出现的,高分子材料包括了塑料、纤维、橡胶三大传统合成材料,另外许多精细化工材料也都是高分子材料。
第一,塑料:一类是通用塑料,如容器、管道、家具、薄膜、鞋底与泡沫塑料等等;另一类叫工程塑料,其强度大,如汽车零部件、保险杠、洗衣机内的滚筒、电器的外壳等。
第二,纤维:人们开发出聚酯、尼龙、腈纶、维尼纶等高分子化合物,通过不同的加工,生产出了各种纤维制品,极大地满足着人类的需要。
第三,橡胶:天然橡胶的种类和品质都受到很大的限制,于是科学家们不断开发出了各种人造橡胶,如丁苯橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、硅橡胶等。
第四,精细化工:比如使得我们的世界变得丰富多彩的各种涂料产品,如家具漆、内外墙乳胶漆、汽车漆、飞机漆等。女孩子用的指甲油,使牙齿变白的增白剂也都是涂料。还有万能胶、建筑用胶、医用胶、结构胶等黏合剂,以及各种吸水树脂等都是高分子产品。三、高分子化学与高科技的结合
当今社会,人们将能源、信息和材料并列为新科技革命的三大支柱,而材料又是能源和信息发展的物质基础。自从合成有机高分子材料的那一天起,人们始终在不断地研究、开发性能更优异、应用更广泛的新型材料,来满足计算机、光导纤维、激光、生物工程、海洋工程、空间工程和机械工业等尖端技术发展的需要。高分子材料向高性能化、功能化和生物化方向发展,出现了许多产量低、价格高、性能优异的新型高分子材料。
随着生产和科学技术的发展,许多具有特殊功能的高分子材料也不断涌现出来,如分离材料、光电材料、磁性材料、生物医用材料、光敏材料、非线性光学材料等等。功能高分子材料是高分子材料中最活跃的领域,下面简单介绍特种高分子材料:功能高分子是指当有外部刺激时,能通过化学或物理的方法做出相应反应的高分子材料;高性能高分子则是对外力有特别强的抵抗能力的高分子材料。它们都属于特种高分子材料的范畴;特种高分子材料是指带有特殊物理、力学、化学性质和功能的高分子材料,其性能和特征都大大超出了原有通用高分子材料(化学纤维、塑料、橡胶、油漆涂料、粘合剂)的范畴。
第一,力学功能材料:强化功能材料,如超高强材料、高结晶材料等;)弹性功能材料,如热塑性弹性体等。
第二,化学功能材料:分离功能材料,如分离膜、离子交换树脂、高分子络合物等;反应功能材料,如高分子催化剂、高分子试剂;生物功能材料,如固定化酶、生物反应器等。
第三,生物化学功能材料:人工脏器用材料,如人工肾、人工心肺等;高分子药物,如药物活性高分子、缓释性高分子药物、高分子农药等;生物分解材料,如可降解性高分子材料等。
可以预计,在今后很长的历史时期中,特种与功能高分子材料研究将代表了高分子材料发展的主要方向。
四、高分子化学的可持续发展
研究高分子合成材料的环境同化,增加循环使用和再生使用,减少对环境的污染乃至用高分子合成材料治理环境污染,也是21世纪中高分子材料能否得到长足发展的关键问题之一。比如利用植物或微生物进行有实用价值的高分子的合成,在环境友好的水或二氧化碳等化学介质中进行化学合成,探索用前面提到的化学或物理合成的方法合成新概念上的可生物降解高分子,以及用合成高分子来处理污水和毒物,研究合成高分子与生态的相互作用,达到高分子材料与生态环境的和谐等。显然这些都是属于21世纪应当开展的绿色化学过程和材料的研究范畴。
参考文献:
高分子材料的性能篇3
1.何为高分子化学
顾名思义,高分子就是相对分子质量很高的分子,它是高分子化合物的简称。高分子化合物,又称聚合物或高聚物,是结构上由重复单元(低分子化合物—单体)连接而成的高相对分子质量化合物。高分子的相对分子质量非常的大,小到几千,大到几百万、上千万的都有。我们有时将相对分子质量较低的高分子化合物叫低聚物。高分子化学作为化学的一个分支,同样也是从事制造和研究分子的科学,但其制造和研究的对象都是大分子,即由若干个原子按一定规律重复地连接成具有成千上万甚至上百万质量的、最大伸直长度可达毫米量级的长链分子,称为高分子、大分子或聚合物。
2.高相对分子质量与高强度
相对分子质量和物质的性质是密切相关的,是决定物质性质的一个重要因素。只有相对分子质量高的化合物才有一定的机械力学性能,才能作为材料使用。例如乙烷、辛烷、廿烷、聚乙烯、超高分子量聚乙烯,都是直链的烷烃化合物,但是分子量变化很大,其机械力学性能因而也有极大的区别。
3.高分子科学的主要内容
既然高分子化学是制造和研究大分子的科学,对大分子的反应和方法的研究,显然是高分子化学最基本的研究内容。高分子科学不仅是研究化学问题,也是一门系统的科学。高分子科学的主要内容有:如何将低分子化合物连
接成高分子化合物,即聚合反应的研究。高分子化合物的结构与性质关系。不同性质的高分子,其结构必然是不同的。为了得到不同性质的高分子,就要去合成具有特殊结构的高分子。
二、高分子材料化学的应用
材料是人类社会文明发展阶段的标志,是人类赖以生存和发展的物质基础。它是指经过某种加工,具有一定结构、组分和性能,并可应用于一定用途的物质。上世纪半导体硅、高集成芯片、高分子材料的出现和广泛应用,把人类由工业社会推向信息和知识经济社会。可以说某一种新材料的问世及其应用,往往会引起人类社会的重大变革,材料是人类文明的重要标志。如果说现在人人离不开高分子材料,家家离不开高分子材料,处处离不开高分子材料,是一点也不过分的。高分子化合物的最主要的应用是以高分子材料的形式出现的,高分子材料包括了塑料、纤维、橡胶三大传统合成材料,另外许多精细化工材料也都是高分子材料。
第一,塑料:一类是通用塑料,如容器、管道、家具、薄膜、鞋底与泡沫塑料等等;另一类叫工程塑料,其强度大,如汽车零部件、保险杠、洗衣机内的滚筒、电器的外壳等。
第二,纤维:人们开发出聚酯、尼龙、腈纶、维尼纶等高分子化合物,通过不同的加工,生产出了各种纤维制品,极大地满足着人类的需要。
第三,橡胶:天然橡胶的种类和品质都受到很大的限制,于是科学家们不断开发出了各种人造橡胶,如丁苯橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、硅橡胶等。
第四,精细化工:比如使得我们的世界变得丰富多彩的各种涂料产品,如家具漆、内外墙乳胶漆、汽车漆、飞机漆等。女孩子用的指甲油,使牙齿变白的增白剂也都是涂料。还有万能胶、建筑用胶、医用胶、结构胶等黏合剂,以及各种吸水树脂等都是高分子产品。
三、高分子化学与高科技的结合
当今社会,人们将能源、信息和材料并列为新科技革命的三大支柱,而材料又是能源和信息发展的物质基础。自从合成有机高分子材料的那一天起,人们始终在不断地研究、开发性能更优异、应用更广泛的新型材料,来满足计算机、光导纤维、激光、生物工程、海洋工程、空间工程和机械工业等尖端技术发展的需要。高分子材料向高性能化、功能化和生物化方向发展,出现了许多产量低、价格高、性能优异的新型高分子材料。
随着生产和科学技术的发展,许多具有特殊功能的高分子材料也不断涌现出来,如分离材料、光电材料、磁性材料、生物医用材料、光敏材料、非线性光学材料等等。功能高分子材料是高分子材料中最活跃的领域,下面简单介绍特种高分子材料:功能高分子是指当有外部刺激时,能通过化学或物理的方法做出相应反应的高分子材料;高性能高分子则是对外力有特别强的抵抗能力的高分子材料。它们都属于特种高分子材料的范畴;特种高分子材料是指带有特殊物理、力学、化学性质和功能的高分子材料,其性能和特征都大大超出了原有通用高分子材料(化学纤维、塑料、橡胶、油漆涂料、粘合剂)的范畴。
第一,力学功能材料:强化功能材料,如超高强材料、高结晶材料等;)弹材料,如热塑性弹性体等。
第二,化学功能材料:分离功能材料,如分离膜、离子交换树脂、高分子络合物等;反应功能材料,如高分子催化剂、高分子试剂;生物功能材料,如固定化酶、生物反应器等。
第三,生物化学功能材料:人工脏器用材料,如人工肾、人工心肺等;高分子药物,如药物活性高分子、缓释性高分子药物、高分子农药等;生物分解材料,如可降解性高分子材料等。
可以预计,在今后很长的历史时期中,特种与功能高分子材料研究将代表了高分子材料发展的主要方向。
四、高分子化学的可持续发展
研究高分子合成材料的环境同化,增加循环使用和再生使用,减少对环境的污染乃至用高分子合成材料治理环境污染,也是21世纪中高分子材料能否得到长足发展的关键问题之一。比如利用植物或微生物进行有实用价值的高分子的合成,在环境友好的水或二氧化碳等化学介质中进行化学合成,探索用前面提到的化学或物理合成的方法合成新概念上的可生物降解高分子,以及用合成高分子来处理污水和毒物,研究合成高分子与生态的相互作用,达到高分子材料与生态环境的和谐等。显然这些都是属于21世纪应当开展的绿色化学过程和材料的研究范畴。
参考文献:
[1]冯新德.展望21世纪的高分子化学与工业[J].科学中国人,1997,(11)
[2]王守德,刘福田,程新.智能材料及其应用进展[J].济南大学学报(自然科学版,2002,(01).
高分子材料的性能篇4
【关键词】晶体学;材料化学;课程模块
现代科学技术赖以发展的各种材料主要以固态形式存在。按照基本粒子排列的有序程度,固态物质可以分为晶态、非晶态和准晶态。鉴于大多数材料只存在于晶态之中且晶态材料具有特殊的规则性,在近代自然科学体系中,通过晶态获得微观立体结构信息已成为极其重要的研究渠道。因此,晶体学是材料科学发展的重要支柱。
材料化学是材料科学的重要分支,是一门研究材料的制备、组成、结构、性质及其应用的科学[1-2]。在材料化学的课程学习中,对于材料结构的认识尤为重要[3]。本文结合本科教学实践,分析了《材料化学》课程的特点和存在的问题,阐述了以晶体学为主线的课程设计及教学方法。
1《材料化学》课程的特点及存在的问题
首先,《材料化学》是材料类专业的重要专业基础课,课程内容多,涵盖了材料的制备、结构、性能及应用。从所涉及的材料来看,包括金属材料、无机非金属材料、高分子材料、纳米材料、功能材料等。这就要求《材料化学》授课教师的知识面广,在内容组织上不仅能体现不同材料各自的特点,还要强调它们之间的联系。
其次,不同于《无机化学》等课程,作为一个较新的学科和课程,《材料化学》不具备经典、权威教材。目前,各大出版社的《材料化学》教材内容各不相同,有些甚至差别较大。此外,新材料的开发、传统材料的升级一直是研究热点。因此,材料相关的理论和知识日新月异。如何将新技术、新成果引入到《材料化学》课程中,做到知识与时俱进,是课程教学中面临的一个重要问题。
2以晶体学为主线的《材料化学》课程教学
2.1课程内容模块化
按照材料化学专业培养目标及山东科技大学人才培养的特点,材料化学课程选用李奇教授编写的《材料化学》作为教材。根据对本课程的理解,以晶体学基本原理为主线,将课程内容进行模块化整合,分为背景模块、晶体学原理模块、金属材料模块、无机非金属材料模块、高分子材料模块和学科前景模块。
2.2课程设计及教学方法
背景模块主要介绍材料化学课程在材料科学中的地位、材料化学课程内容、学习目的及学习方法,结合实际例子(如摔不碎的纳米陶瓷刀,“敲不碎、砸不烂”的“玻璃之王”――金属玻璃等)激发学生对课程的兴趣。
晶体学原理模块中以晶体的周期性和对称性为教学重点,结合宏观实例解释微观的概念和原理。鉴于晶体学原理模块内容较为抽象,在教学过程中采用多媒体与模型(主要是球棍模型)相结合的方式,通过对比教学加强学生对基本概念和原理的掌握。从晶体与非晶体的异同入手引出晶体的周期性和对称性,从晶棱、晶面和晶胞三个层次分析晶体的特点,结合X射线衍射完整讲解晶体学知识,引导学生构建完整的晶体学理论框架。
在学习晶体学知识的基础上,金属材料模块、无机非金属材料模块和高分子材料模块分别从三大类材料各自的结构出发结合制备方法引出材料的性能及应用。在金属材料模块的教学中,结合前期《无机化学》中有关金属晶体的知识,引出“等径圆球密堆积”的模型,从而分析金属单质一维、二维和三维密堆积的基本形式。为了使学生更好的理解二维密堆积中四面体空隙和八面体空隙的产生,在教学中将学生分成若干小组,每组发放一定数量的乒乓球(代表金属单质原子),请学生动手排出密堆积的形式。另外,准备已组合好的模型,让学生从不同角度观察二维密堆积,查找四面体空隙和八面体空隙的位置。通过二维密堆积的详细讲解和学生的动手组装,使学生更好的理解密堆积,为后续金属单质的三维密堆积和合金结构的学习打下良好的基础。
在金属材料中除了金属晶体之外,还涉及到准晶这一特殊的结构。与晶体的长程有序不同,准晶具有长程准周期性平移序和非晶体学旋转对称性。这部分的教学中着重强调准晶与晶体在结构上的不同,并由此引出其制备和性能的特殊性。
在无机非金属材料模块的教学中,引导学生从比较离子晶体与金属晶体的结构区别入手,结合球棍模型的组装,使学生掌握离子晶体结构的解析方法。着重强调离子晶体结构分析中以往学生经常出现的错误。例如氯化铯(CsCl)晶体的解析,学生在根据晶体结构示意图(图1)进行分析时往往得出其为体心立方结构,但实际上CsCl晶体应该是简单立方结构。该错误的出现是因为学生并未掌握离子晶体结构分析要点。在离子晶体的结构解析中,应首先分析负离子(或正离子)的排列方式,然后查找正离子(或负离子)的位置及其占据的空隙类型,最后分析正负离子的配位数以及每个晶胞中所含正负离子个数。只有按照这样的分析方式才能正确得出晶体结构。在学生熟悉无机材料典型的晶体结构后,引出无机材料的经典制备方法,并比较各种方法间的差异,由此得出材料的性能和应用。在晶态无机材料的教学中,穿插近代科研中比较热门的碳材料(如碳纳米管、石墨烯等)和分子筛材料,分析这些材料的特殊结构及由此衍生出的特殊性质和应用。例如,分子筛材料特殊的孔道结构使其具有择形催化性能并在石油化工领域中有着非常重要的应用。
图1氯化铯(CsCl)晶体的结构示意图
另一方面,在无机非金属材料中还涉及到非晶态材料。教学过程中通过晶体结构的周期性和对称性,引出非晶态材料(如玻璃等)的结构特点,注重新兴非晶态材料(如金属玻璃)的合成及性能。
在高分子材料模块的教学中,引导学生总结高分子与小分子在结构上的差异,引出高分子的晶态、非晶态、液晶态和取向态。结合偏光显微镜对球晶的观察,使学生进一步明确晶态高分子与金属晶体、离子晶体等的区别。通过高分子材料的晶态没有小分子完善,而其非晶态的有序性却高于非晶态小分子,引出高分子材料具有小分子所不具备的特殊性能和应用。
在前景展望模块,主要从化学的角度针对材料的发展进行分析,使学生认识到材料的特殊魅力。结合材料化学的发展前沿,提高学生对材料学科今后发展趋势的认识,为学生成为材料专业技术人才奠定坚实的基础。
3结语在材料化学课程教学中,以晶体学为主线将金属材料、无机非金属材料和高分子材料串联在一起。采用比较式教学、多媒体和模型相结合的教学手段,加深学生对材料结构、制备、性能和应用的理解和认识,提升学生分析解决问题的能力。
【参考文献】
[1]米晓云,张希艳,柏朝晖,等.科研对材料化学课程教学的促进作用[J].现代教育科学,2009,1:112-114.
高分子材料的性能篇5
关键词:纳米材料;纳米尺度;阻燃材料
中图分类号:TB383.1文献标识码:A文章编号:1006-8937(2013)02-0179-02
当前,塑料、橡胶和纤维等聚合物应用十分广泛,但其易燃性给其使用和推广造成了一定的影响。阻燃材料尽管在一定程度上起到了阻滞燃烧、延缓火灾蔓延、争取逃生和救援时间等积极的作用,但也在力学性能、性价比、环境污染等方面存在不足。随着纳米材料在力学、电磁学、热学、光学等多个领域的应用,纳米技术和纳米材料显现出广阔的发展前景。纳米阻燃材料的研制和发展有利于克服和改进传统材料的缺点,蕴含着巨大的社会效应和经济效益。
1纳米材料简介
纳米材料是指在结构上具有纳米尺度及其相应功能特征的材料,1纳米为十亿分之一米,纳米尺度一般是指1~100nm。材料的结构和粒径进入纳米尺度范围时,就表现出表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应等多种特殊效应,从而使材料表现出多种奇特的功能。纳米材料按照材质分类,可以分为纳米金属材料、纳米非金属材料、纳米高分子材料和纳米材料。纳米技术和多种材料的结合,大大改变了材料的综合特性,为进一步优化材料的功能提供了有力的技术支持。
2阻燃材料的分类和要求
阻燃材料可分为无机和有机、含卤和无卤等多种类型。无机主要指氢氧化铝、氢氧化镁、硅系、三氧化二锑等阻燃材料体系,有机主要以卤系、氮系和磷系为主,它们通过复配或者反应得到形成添加型或者反应型复合材料,进而起到阻燃作用。相比较而言,无机阻燃材料具有低成本,热学性能好,燃烧时有毒气体少等优点,但是它们也具有机械性能差、填充量大且与基材相容性差等缺陷。有机型阻燃材料具有阻燃性能好,与基材相容性好,填充量小等优点,但是具有燃烧时发烟量大且产生有毒气体等缺陷。因此发展低烟、低毒、无卤、物理机械性能优越等环保型阻燃材料成为一直以来重要的研究课题,纳米技术的出现和发展为解决上述阻燃材料的现有缺陷提供了可能。研究表明,纳米阻燃材料应满足下列要求:第一,材料应符合环保要求,燃烧时产生的毒性气体少。第二,材料应具有功能性强、阻燃效率高等特点,同时应克服传统阻燃材料机械物理性能方面的现有缺陷,拓展材料应用范围。第三,降低综合成本,增强材料的性价比。
3纳米阻燃材料的类型
将传统的阻燃剂颗粒细化到纳米级应用到相关材料中即可获得纳米阻燃材料。纳米技术的应用、纳米级颗粒的获得以及纳米尺度所表现出来的特有的多种效应大大增强了阻燃剂和材料间的相容性,一定程度上减少了阻燃剂的应用量,同时也提高了阻燃性能,提升了阻燃材料的性价比。目前,已研制的常用纳米阻燃复合材料大致有以下几种。
3.1聚合物粘土纳米材料
粘土纳米阻燃材料涉及阳离子粘土矿物蒙脱石、阴离子粘土矿物层状双金属氢氧化物、非离子型粘土矿物高岭石等原料,借助插层方法修饰,获得对聚甲基丙烯酸甲酯(PMMA)和聚丙烯(PP)等有效的复合阻燃材料。粘土类阻燃剂的层状硅酸盐中含有炭化层,在高温下能够俘获一些自由基,在改变了材料力学性能的同时,也提高了材料的阻燃性能,还避免了添加卤系阻燃剂后燃烧时发烟量大、产生腐蚀性和毒性气体等缺陷。火灾时,硅酸盐碳化层减缓了材料燃烧时挥发物逸出的速度从而使得粘土类纳米材料在凝聚相分解过程中挥发物的溢出率低。
3.2纳米氢氧化镁阻燃材料
纳米级氢氧化镁阻燃材料的阻燃性、发烟量与基材的相容性等性能要优于微米级的氢氧化镁阻燃材料的相应性能。在一定剂量下,纳米级氢氧化镁阻燃体可以达到UL94标准的V-0级。金属氢氧化物本身优势明显,关键是添加量要比较大,通常在60%以上,而高填充量对阻燃材料的物理机械性能影响较大,而纳米技术正好能很好地解决阻燃剂和基体间的分散性和相容性的问题,两种技术的结合大大提升了氢氧化镁阻燃剂的应用和阻燃后材料的阻燃性能。纳米氢氧化镁阻燃材料具有无卤、低烟、无毒、无滴落、耐酸、稳定性好、分解温度高、不腐蚀设备等多种优异性能,具有广阔的应用前景。
3.3纳米碳酸钙类复合材料
用锡酸锌包覆纳米碳酸钙粉体并应用到聚氯乙烯(PVC)中,得到40~60nm的产品粒径,减少了增塑剂在PVC中的用量,提高了产品的加工性能,再加上硬质PVC本身的高含氯量和高阻燃性,极限氧指数(LOI)可以达到45%,获得了优良的阻燃复合材料。经过甲基丙烯酸处理的纳米碳酸钙/聚苯乙烯(PS)原位复合材料粒径也在
100nm以内,也具有较好的阻燃性能。此外也可以应用脂肪酸、钛酸酯偶联剂以及纳米碳酸钙经过表面处理得到聚丙烯/纳米碳酸钙复合材料,经过实验和应用,都在保持较好阻燃性能的基础上,材料的力学性能方面得到了很大的改善,材料的抗冲击强度也有所提高。
3.4纳米级氧化锑阻燃材料
纳米级氧化锑阻燃PVC材料的阻燃性能高,发烟量低,其性能优于传统的PVC材料的相应性能,而且适合用于纺织品中。纳米级氧化锑颗用量少,而且不会阻塞机器的喷丝孔,使得纺织品能够阻燃。另外,纳米级的氧化锑材料的比表面积很大,对一些纺织品的渗透性能好,具有很强的粘附力,由此形成的纺织材料还具有很好的耐洗牢度,不易褪色。纳米氧化锑具有成本低,平均粒度小,在聚酯材料中分散均匀,相容性好等优点。
3.5EVA/二氧化硅纳米复合材料
纳米二氧化硅改性的聚合物已经获得了广泛的应用,原因是经过纳米化和改性,所获得的纳米复合材料具有质轻、高强度、高韧性等多种优点。EVA类纳米复合材料中纳米填充层在内层聚合物外面形成一层隔离层,从而强化了炭化过程,材料降解过程延长,用锥形量热计测量出的热释放速率峰值极低,阻燃性能较传统阻燃材料有大幅提高。在力学性能方面,研究表明,EVA/二氧化硅复合材料中的体积填充分数为4%时,复合材料的拉伸强度最高,约为基体的两倍,这也充分显现出了纳米技术在提升复合材料的物理机械性能方面的重要作用。
4纳米阻燃材料制备工艺进展
纳米材料的制备方法主要有以下几种。
①溶胶―凝胶法。溶胶―凝胶法是制备纳米材料比较普遍的制备方法。其流程是:将金属氧化物或金属盐溶于水中,通过水解反应后,形成溶胶状纳米级微粒,再将溶剂蒸发,之后形成凝胶物体。这样就形成了有机聚合物与无机分子相互渗透,具有多层有序结构的阻燃材料。该方法化学反应温和,无机成分和有机成分相互掺混,结构紧密,但也存在凝胶干燥时易出现材料收缩脆裂等缺点。
②共沉淀法。共沉淀法是指先期形成的无机纳米粒子与有机聚合物混合沉淀形成阻燃材料的方法。这种方法中,纳米粒子与材料合成分开制作,纳米粒子的尺寸与结构可以很好的控制,同时纳米粒子在聚合物中均匀分布,综合性能好。但该方法中纳米粒子易团聚,均匀分散纳米微粒是最大难题。共沉淀法可分为溶液共沉淀法、乳液共沉淀法与熔融共沉淀法等多种方式。
③插层法。插层法的流程是将纳米微粒制成层状,再将其插入有机聚合物层之间,导致二者达到纳米级复合。这类方法有聚合插层法、熔融插层法及溶液插层法等类型。
④原位共聚法。原位共聚法是指将纳米粒子均匀分散在溶液中,再借助加热、辐射等手段,使聚合物与纳米粒子之间发生聚合等一系列反应,最后得到纳米级分散的阻燃材料。该方法得到的阻燃材料具有粒子纳米特性好,层间焓熵势垒低等优点。
⑤原位自组装法。原位自组装法是指利用聚合物分子与纳米粒子间的分子间力、层间静电力等作用,在原位进行自组装,生成无机主晶核,最后聚合物再将生成的晶体包围在内。这种方法合成双羟基纳米复合物比较有利,纳米相能有序分布。
5纳米阻燃材料的展望
在阻燃剂领域中,无机添加型阻燃剂应用最早,用量最大。如锑系、铝系、磷系、硼系阻燃剂等等。但目前主要存在阻燃剂和基材相容性差和对物理机械性能影响较大等问题。研究表明纳米技术的利用可以提高塑料制品的阻燃性以及机械性能,加强纤维制品的阻燃性以及抗静电能力,加强橡胶制品的阻燃性以及减少其燃烧时的有毒气体的释放和发烟量。纳米阻燃材料可以在发挥无机类阻燃材料低卤或无卤、低烟、低腐蚀等优势的基础上,借助纳米技术大大提高无机类阻燃材料的综合性能。
此外纳米阻燃材料也将在提高材料的热稳定性、减少材料在使用中的团聚、增强阻燃剂和材料间的用量、粒径、层状结构的优化和复配、优化材料的储运和添加过程、提升材料的阻燃效果、促进材料的多功能化等方面得到进一步发展。在纳米阻燃复合材料的微结构及形成机理、材料的阻燃机理细节等基础理论方面加强研究,不断加速发展朝阳的纳米阻燃材料事业,有利于相关产品产业化的顺利实现和拓展。
综上所述,纳米阻燃材料具有阻燃性能好,环保效果好,并且燃烧时放出的有毒气体少,填充用量少,产品趋于多功能化发展的特点,可广泛应用于汽车、航空、电子家电等多个行业,具有很大的发展空间。但是纳米阻燃材料的发展,仍有很多亟待解决的实际问题,如纳米粒子形态的控制、纳米粒子分布工艺以及多功能化的统一等。相信随着高分子材料科学与工程技术的不断进步,随着纳米技术的出现、应用和快速发展,纳米阻燃材料研究必将会取得长足的进步,为更好地保护人民生命财产安全提供坚实的物质技术保障。
参考文献:
[1]欧育湘,陈宇,王筱梅.阻燃高分子材料[M].北京:国防工业出版社,2001.
高分子材料的性能篇6
【关键词】高分子材料;老化;影响因素;措施
配方的构成和材料本身的性质是引起高分子材料发生老化的主观原因。外部的施力、自然条件的急剧变化以及生物、微生物的侵蚀是引起高分子材料发生老化的客观原因。主观因素和客观因素的结合加剧了高分子材料的老化。
1、环境因素对高分子材料老化行为的影响
1.1温度和氧气的影响
如果温度升高,高分子链的运动就会变得比平时更加激烈,而化学键的理解能有一定的范围,如果温度过高超出了这一范围,基团会立即脱落,高分子链也会发生热降解,实际情况表明,不在少数的书本都介绍了高分子材料的热降解的相关内容。材料的力学结构在很大程度上会受到温度降低的影响,在纬度较高的地区或南北两极,塑料更容易遭到低温度的破坏。针对结晶型塑料来讲,一旦玻璃化温度高于环境温度,将不利于高分子链段的自由运动,塑料硬化、易断是主要表现;无定型塑料却不容易受到极寒环境的影响和破坏。
众所周知,氧的渗透性很好,这个特点也因此成为加剧高分子材料老化的罪魁祸首,无定型聚合物和结晶型聚合物相比,耐氧化能力明显要弱一些。此外,氧气是影响、破坏材料的主要因素,橡胶一旦与氧气结合,都会降低塑料物品的使用年限,使其化学性能发生完全的改变。
过氧化物一旦发生氧化反应,其组成分子就会慢慢的积累到一起,当全部积累到一起后,就会发生分解,这种分解不是杂乱无章的,随后,交联或支化反应就会发生,材料的种类不同、老化发生的条件不同。这些都导致高分子材料发生老化前后性质的不同。
1.2湿度的影响
高分子材料容易受到湿度的影响,高分子材料如果被暴漏在高湿度和强紫外线下,自身的性质会发生改变。高分子材料如果受到湿度的影响,会使自身的柔软性降低,导致不能过度的弯曲;而强烈的紫外线照射直接会降低高分子材料的可延展性、可伸拉性。
1.3化学介质的影响
化学介质一旦深入到高分子材料的内部,就会发生对其共价键与次价键作用。聚合物的共价键一旦与少量的侵入相接触,就立马会发生反应,聚合物的大分子结构被迫改变,如断链、交联、渗透物的加成等,或这些反应的综合。这个化学过程是不可逆的,也是不可避免的,聚合物及其添加剂的化学性质会因此而发生改变,另外,发生改变的还有渗入介质本身的化学性质。虽然,在渗入介质对聚合物分子链间的次价键的破坏过程没有化学结构变化发生,但作为整体的高分子材料来说,物理变化并不少见,反而是显而易见的,例如环境应力龟裂、增塑、低分子添加剂迁移等等。
1.4光老化
离解能的相对大小及高分子化学结构对光波的敏感性决定了聚合物受光的照射是否引起分子链的断裂。
关于光氧化降解过程和防止这种降解过程的发生,第一要把阳光吸收进来,用于吸收阳光的主要是构成物质的分子和原子,二者通常处于相对活跃的状态,而且它们各自吸收的光的波长具有特定的范围。紫外波长300~400nm,能被含有羰基及双键的聚合物吸收,而使大分子链断裂,改变聚合物的化学结构和性能。
2、防老化措施
对于结晶型塑料及橡胶,要求使用温度应处于玻璃化温度以上,但是环境的温度过低会使玻璃化温度高于材料的使用温度,这样一来,就会改变材料的物理性能,最终使材料的使用价值得不到彻底的发挥。生产加工高分子材料的时候,为了适当地降低玻璃化温度,可以降低材料的结晶度、提高大分子链的柔性和适当降低交联度;还可以把增塑剂添加到已经成型的材料当中,这样做不仅有利于增强材料的可塑性,而且可以使玻璃化温度得以降低,而材料的耐寒性得以提升。还存在一部分高分子材料,如果使用环境的温度过高,也会加剧发生老化的可能性,增加高分子链的刚性如在侧链中引入苯环,适当提高材料的结晶度、交联程度和相对分子质量,可以提高熔点或粘流温度,但是这样做不利于保持材料固有的可加工性。
稳定化是光氧老化的主要防护措施,削弱强烈的紫外线对高分子材料的照射与破坏是各种稳定化措施的主要目的是。提高抗光氧老化的效果,“纯”化以及高分子的自身结构也是不错的出发点。就目前来说,防止高分子材料的光氧老化的主要方法就是添加稳定剂。
(1)光屏蔽剂―――涂层和颜料:涂层就是为高分子材料涂抹一层保护膜,这层保护膜也是一种高分子材料,具有良好的光屏蔽作用,而且它吸收强紫外线的能力较强;许多颜料可以屏蔽光线,如果将其涂抹在高分子材料的表面,不仅可以着色,还可以防止紫外线的直接攻击,对高分子材料起到很好的保护作用,按常理来说,颜料的颜色越深,其防护效果越明显,由此可见,炭黑是最好的颜料选择,它一方面可以使得游离基无法逃离,能够将游离基稳定的留住,另一方面它具有很强的转化功能,这里的转化的源物质是其本身吸收到的能量,转化后的物质是红外线,与一般的辐射性质不同,这种红外辐射危害极小,甚至为零。
(2)猝灭剂:一部分化学物质起光稳定作用不是因为吸收了紫外光,其光稳定效果的实现和发挥有两种途径:第一,通过一些列的化学反应达到目的;第二,化学物质的分子之间的相互转换。
(3)受阻胺(HALS)类光稳定剂:20世纪70年代初期,受阻胺类光稳定剂诞生,其稳定效果是非常明显的,它们是空间阻碍胺类哌啶系衍生物。受阻胺类光稳定剂使得高分子材料不容易受到光的影响,功能繁多。
不论是在我国国内,还是国外许多国家都在研究怎样避免霉菌对高分子材料造成破坏,有两个措施可以有效地防止霉菌的侵蚀,第一种是涂抹防霉专用剂。第二种是在其表面涂抹另外一层材料,简单来说就是涂层法。涂层又叫屏蔽法,而这种方法较为复杂、麻烦,涂层的粘接性不够强,容易脱落,脱落之后容易遭到侵蚀,总的来说,就是存在很多亟待解决的问题,因而第二种方法,即防霉剂的运用受到大多数人的青睐。
聚酯、聚缩醛、聚酰胺和多糖类高聚物在酸或碱催化下,遇水发生水解的可能性较大,某些区域一旦酸性气体较多,大气污染浓烈,酸雨频发,就会阻碍和限制这种高分子材料的使用。为了防止这种材料出现水化解体,把一层防护蜡或防水薄膜覆盖在在这类材料的表面是较为常用,也是较为实用的办法。
3、结语
由于经济、科技条件的制约,加之高分子材料自身结构的复杂性、难以捉摸性,导致我们很难将其老化的原理搞得明白、透彻,对其研究还有很长的路要走,所以,加大对高分子材料老化性能的机理研究势在必行,尽最大努力找出哪些因素加剧了高分子材料的老化,并且具体问题具体分析,研究具有针对性、可行性的解决措施。
参考文献