医用高分子材料研究(6篇)
医用高分子材料研究篇1
关键词:交叉学科;本科教学;互动;创新思维;实践认知
中图分类号:G642.0文献标志码:A文章编号:1674-9324(2013)07-0143-03
现代社会科技进步日新月异,创新性的研究和产品不断涌现,其中非常多的成果都来自于交叉学科的贡献。一个已经被普遍接受的共识是:学科交叉点往往就是科学新的生长点、新的科学前沿,这里最有可能产生重大的科学突破,使科学发生革命性的变化;同时,交叉科学是综合性、跨学科的产物,因而有利于解决人类面临的重大复杂科学问题、社会问题和全球性问题[1]。所以,对于本科教学中的交叉学科课程的教学就提出了更高的要求,如要求教师纵览多个学科的发展,从而能站在交叉学科的前沿来引领学生去认知和创新性思考;同时,也要求学生积极主动地去检索相关资料,能互动地参与到整个课程教学的过程中来。只有这样,交叉学科的本科教学才能获得理想的教学效果,提高学生的科学敏锐力和培养学生的创新性思维。尽管教育界对交叉学科研究生阶段创新型人才培养已有较多思考[2],但是迄今为止对交叉学科的本科教学的交流还很少。
本文以四川大学高分子科学与工程学院开设的“生物高分子及制品”课程教学为例,从课堂教学的多个方面提出了对交叉学科的本科教学的思考和体会。
一、课程背景
“生物高分子及制品”是四川大学高分子科学与工程学院为大三学生开设的一门课程,任课教师均来自我院医用高分子材料及人工器官系。医用高分子材料专业建立于1978年,并分别于1986年和1992年获得硕士、博士学位授予权,是我国最早的培养生物医用高分子材料专业人才的基地之一。系内的教师在生物医用高分子材料及人工器官的科研、教学方面有30多年的丰富经验。本课程所使用教材主要为我系老师合力编写的普通高等教育“十一五”部级规划教材《生物医用高分子材料》[3],并结合科研前沿做了丰富多样的专题讲解。目前一个年级有三个班平行授课,每个班的人数在70~90人。本门课程是典型的交叉学科产物,其内容涉及生物医学、材料学(高分子材料)、工程设计、医疗器械等多个领域。教材的主要章节包括绪论、高分子材料和生物体的相互作用、生物医用高分子材料的生物相容性和安全性评价、人工器官用高分子材料、医疗诊断用高分子材料、药物缓控释高分子材料、软硬组织替代和组织工程用高分子材料、医用高分子材料的设计。根据我院学生学术研究发展方向和工程应用发展方向并重的特点,在课堂讲授的时候授课教师会尽量同时扩展到前沿的科研领域(如医用高分子非病毒基因载体)和相关产业的应用环节(如生物医用高分子材料制品的生产、消毒)等。考查方式以课堂讨论、平时成绩和期末笔试成绩综合打分。
二、互动式授课的几点思考与体会
1.综合多学科领域的讲解方式。生物医用高分子材料是功能高分子材料中重要的组成部分,是指在生物及医学领域所使用的高分子材料。总体而言,本课程是两个一级学科:材料学(其中的高分子材料)和生物医学工程学(其中的生物材料)的交叉点。两个学科的跨度很大,如何能生动形象地讲解和引领学生思考至为关键。例如,在进行人工器官用高分子材料的讲解时,我们通常会采取由浅入深的启发式教学方法。首先,我们将人体器官做一个对应的抽象化的模型,其中包括脑—计算机、耳—声音探测器、肺—气体交换器、心—泵/液体输送器、肝—化学工厂、肾—分离/净化系统和血管—输送管路等,以方便同学们从功能上理解人体器官并能针对性地对人工器官进行设计、思考。通过讲解,同学们了解到研究人工器官并不能简单考虑其与人体组织器官的类似,更重要的是能使其再现或部分再现人体器官的功能。举例来说,在讲到人工肾时,我们会先从医学的角度讲述肾脏的结构和功能,重点描述肾小球的滤过作用和肾小管的重吸收作用。其中,肾小球每天以125ml/min的滤过率处理约180L的血液,肾小管将滤过液中大部分的水、电解质、葡萄糖和其他小分子有用物质重新吸收入血液,而每天最终排尿量仅为2.0L。通过上述讲解,同学们可以清楚地了解肾脏在人体中的主要功能,那么进一步的关于人工肾功能设计的讲解也就顺理成章了。人工肾是血液净化技术中所使用的最重要的人工器官,再通过进一步关联讲解病理学的内容,我们可以使同学们了解到使用人工肾的血液净化技术的目的和意义在于治疗与血液相关的疾病,既包括肾脏方面的疾病如肾衰竭,也包括各种由于血浆成分发生病理改变而产生的血液性或免疫性疾病,如巨球蛋白血症、系统性红斑狼疮、血友病和多发性骨髓瘤等。紧接着,针对不同的疾病和需要去除致病物质,我们很自然就将知识点转到不同的血液净化技术上来,分别讲述血液透析、血液滤过和血液透析滤过三种人工肾技术。最终,三种不同的人工肾技术就引出了不同的生物医用高分子材料和制品的需求和设计:通过对用于人工肾的各种生物医用高分子材料的化学成分、物理性能的分析,以及对完成其制品的各种工程技术的描述和表征,使同学们融会贯通,掌握这个跨多学科交叉领域的知识点。再举一个例子,在讲组织工程用高分子材料章节时,由于这是一个非常前沿的跨生物学、医学和材料学的交叉领域,如何有机结合多学科知识使同学们带着兴趣学习就非常关键。首先,我们会用“人耳鼠”等组织工程经典的图片展开绪论,使同学们的目光一下子就被吸引住了,让他们去思考:人类科技的进展真的有一天能实现更换人体的各个组织器官吗?由于多个现实的案例摆了出来,他们就会意识到这是有可能并已经部分实现了的前沿科技。进而,我们就会用搭房子来做一个形象的比喻讲解组织工程的三要素:细胞是砖块,生长因子是建筑工人,而生物材料就是整个房屋的支架。而组织工程支架材料对生物相容性、生物降解性能的要求就使得生物医用高分子成了其中的首选。在这样的引领下,同学们的关注点自然就转到了我们高分子学科与组织工程的关系,并能带着兴趣学习接下来的组织工程的原理和方法、软骨组织工程支架材料、神经组织工程支架材料、血管组织工程支架材料、肌腱组织工程支架材料、皮肤组织工程支架材料、角膜组织工程材料、组织工程支架制品的制备方法等多个知识点。在讲解的过程中,我们还会播放组织工程培养细胞、体外构建人工血管等录像资料,让同学们更直观地认识生物医用高分子材料在组织工程中的应用。
2.学生积极参与的教学互动形式。除了教师的有效引领作用外,学生能否积极参与教学过程的互动也是交叉学科本科教学能否成功的关键。对于本课程,我们主要采取了课外检索学术资料做PPT报告和分组讨论的形式。如前所述,我们将人体组织、器官分开并做了一个对应的抽象化的模型。对应于此,我们将学生分成了若干个小组,安排每个小组负责准备和主持一个主题的PPT报告和讨论。我们会提前一周通知负责组的同学(通常为4~8人),事先与他们讨论讲述的主线和子方向,要求同学们分工合作,其中一些同学负责每人5分钟的PPT讲解,其他一些同学负责资料收集和整理工作。例如对肺的一个主题,通过一周的准备,同学们查阅了一定数量的文献资料,准备了精美的PPT资料和讲解内容:第一个同学做了呼吸系统和常见呼吸系统疾病的综述;第二个同学的报告集中于描述现有的呼吸系统手术(尤其是肺部手术)中使用的大量生物医用高分子材料和制品,例如包括呼吸道麻醉科导管、单肺通气封堵导管等医疗器械;第三个同学从人工肺的研究角度出发,用较多的学术资料描述了该领域的研究前沿,进一步通过阅读资料提出了现有研究的不足,并提出他们小组讨论后对该领域的展望;最后一个同学结合工程实际,从生产设备、生产工艺等方面描述该领域医用高分子制品的制备方法,并简单提及国内外的主要生产企业。通过这样的一个“准备—讲述”的过程,该组同学系统地掌握了交叉学科从基本概念到学术研究,再到工业领域的诸多方面,并能逻辑清晰地讲述给全班同学。在同学们的PPT讲述过程中,任课教师会组织听报告的同学们进行有益的讨论。例如,在讲解到有关生物医用高分子材料和制品的生物相容性的时候,有做报告的同学会以隐形眼镜为例讲解,其制备原料主要是聚羟乙基甲基丙烯酸酯类材料。这时,我们会请有戴过隐形眼镜的同学举手,并组织讨论:为什么隐形眼镜有日抛、月抛和年抛的区别,它们对材料的要求有何不同?为什么夜晚要取下眼镜进行清洗保养?作为使用者,自己戴隐形眼镜会有什么样的要求?通过这些问题的讨论,同学们可以进一步了解作为交叉学科的产品,生物医用高分子材料和制品不仅要在功能上满足使用的医学目的,还要求我们从材料学和工程学的角度去设计,才能获得较为理想的使用性能。而且这样的讨论也容易引起同学们的兴趣,避免过多过深的理论讲解会导致的注意力分散。在整个PPT报告和讨论的过程中,任课教师会针对同学们的资料准备情况、PPT讲解情况和讨论情况进行评价和打分,作为成绩考核的重要标准之一。
3.创造条件结合实践教学。交叉学科除了能在学术前沿激发出更多的创新性火花之外,往往还可以通过学科的交叉设计、生产出大量的实用的制品。本门课程针对的生物医用高分子材料和制品就是典型例子,其所涉及的产业主要为医疗行业和医疗材料(器械)企业。因此,创造条件结合实践进行教学就成了本门课程重要的组成部分。本门课程的授课教师大多与上述行业的企业有长年的产学研合作关系,已经完成或正在研发多项生物医用高分子材料和制品的工作,因而具备较好的实际条件进行实践教学。例如,任课教师与成都市的多家医疗器械生产企业建立了长期的科研关系,从而能将课程的认识实践带到其中的一些单位,包括人工肾的生产企业和医疗耗材(导管、输液制品)企业等。通过实习参观企业,以及在课堂上观摩老师带的各种生物医用高分子材料和医疗器械,同学们对这门交叉学科涉及的产业有了更好的认识。另外,经常有高端的相关行业展会在成都举行,例如2012年的第68届中国国际医疗器械秋季博览会在成都云集了国内外的多家企业。这种时候,任课教师就会及时公布展会时间,并鼓励同学们去参观,通过学习和对比国内外企业的产品,了解其设计理念和所使用的生物医用高分子材料。展会结束之后,我们会和同学们在课堂上针对展会上的所见所想进行很多有益的讨论,很好地帮助同学们更进一步地认识这门交叉学科的知识和产业。
4.结合教学内容邀请专业医生讲座的教学。结合课堂讲授内容,我们会定期或不定期邀请一些医生到课堂进行讲座,如讲授到血液透析时,我们会专门邀请四川大学华西医院肾内科进行血液透析的医生到课堂进行讲座,从医生的角度讲述医用高分子材料在血液透析制品方面的临床应用。通过这些讲座,使同学们更深刻了解医用高分子材料及制品的实际应用,增加了学习的积极性和兴趣。最后,由于交叉学科课程覆盖的知识面非常广,简单地进行死记硬背的考试是不适宜的。经过商讨,本课程的多位任课老师达成了一致的共识:平时的讨论和报告占学生成绩的很大一部分,期末考试以开卷方式进行,出题尽量是基于交叉学科的特点来综合性地考查学生的逻辑思维、判断和创新能力。通过八年多的教学实践,我们发觉本课程的教学互动效果很好,也起到了很好的引领作用,有很多学生对这门交叉学科产生了浓厚的兴趣,并相继进入了生物医用高分子材料和制品的科研或产业领域。
总而言之,交叉学科的独特性决定了对其本科教学方法的灵活性、多样性的要求。只有不断解放思想、更新教学理念和完善教学手段,才能保证交叉学科教学的质量,才能更加有效地提高同学们的兴趣和综合能力,为更高阶段的交叉学科创新性研究以及相关交叉学科的产业输送人才。
参考文献:
[1]路甬祥.学科交叉与交叉学科的意义[J].中国科学院院刊,2005,20(1):58-60.
[2]吴宜灿.学科交叉与创新型人才培养的实践与思考[J].中国科学院院刊,2009,24(5):511-517.
[3]赵长生.生物医用高分子材料[M].化学工业出版社,2009.
医用高分子材料研究篇2
1.1纳米碳材料
纳米碳材料主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等。
碳纳米管有独特的孔状结构[1],利用这一结构特性,将药物储存在碳纳米管中并通过一定的机制激发药物的释放,使可控药物变为现实。此外,碳纳米管还可用于复合材料的增强剂、电子探针(如观察蛋白质结构的AFM探针等)或显示针尖和场发射。纳米碳纤维通常是以过渡金属Fe、Co、Ni及其合金为催化剂,以低碳烃类化合物为碳源,氢气为载体,在873K~1473K的温度下生成,具有超常特性和良好的生物相溶性,在医学领域中有广泛的应用前景。类金刚石碳(简称DLC)是一种具有大量金刚石结构C—C键的碳氢聚合物,可以通过等离子体或离子束技术沉积在物体的表面形成纳米结构的薄膜,具有优秀的生物相溶性,尤其是血液相溶性。资料报道,与其他材料相比,类金刚石碳表面对纤维蛋白原的吸附程度降低,对白蛋白的吸附增强,血管内膜增生减少,因而类金刚石碳薄膜在心血管临床医学方面有重要的应用价值。
1.2纳米高分子材料
纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1nm~1000nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。
1.3纳米复合材料
目前,研究和开发无机—无机、有机—无机、有机—有机及生物活性—非生物活性的纳米结构复合材料是获得性能优异的新一代功能复合材料的新途径,并逐步向智能化方向发展,在光、热、磁、力、声[2]等方面具有奇异的特性,因而在组织修复和移植等许多方面具有广阔的应用前景。国外已制备出纳米ZrO2增韧的氧化铝复合材料,用这种材料制成的人工髋骨和膝盖植入物的寿命可达30年之久[3]。研究表明,纳米羟基磷灰石胶原材料也是一种构建组织工程骨较好的支架材料[4]。此外,纳米羟基磷灰石粒子制成纳米抗癌药,还可杀死癌细胞,有效抑制肿瘤生长,而对正常细胞组织丝毫无损,这一研究成果引起国际的关注。北京医科大学等权威机构通过生物学试验证明,这种粒子可杀死人的肺癌、肝癌、食道癌等多种肿瘤细胞。
此外,在临床医学中,具有较高应用价值的还有纳米陶瓷材料,微乳液等等。
2纳米材料在生物医学应用中的前景
2.1用纳米材料进行细胞分离
利用纳米复合体性能稳定,一般不与胶体溶液和生物溶液反应的特性进行细胞分离在医疗临床诊断上有广阔的应用前景。20世纪80年代后,人们便将纳米SiO2包覆粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮胶体溶液中,使所需要的细胞很快分离出来。目前,生物芯片材料已成功运用于单细胞分离、基因突变分析、基因扩增与免疫分析(如在癌症等临床诊断中作为细胞内部信号的传感器[5])。伦敦的儿科医院、挪威工科大学和美国喷气推进研究所利用纳米磁性粒子成功地进行了人体骨骼液中癌细胞的分离来治疗病患者[6]。美国科学家正在研究用这种技术在肿瘤早期的血液中检查癌细胞,实现癌症的早期诊断和治疗。
2.2用纳米材料进行细胞内部染色
比利时的DeMey博士等人利用乙醚的黄磷饱和溶液、抗坏血酸或柠檬酸钠把金从氯化金酸(HAuCl4)水溶液中还原出来形成金纳米粒子,(粒径的尺寸范围是3nm~40nm),将金纳米粒子与预先精制的抗体或单克隆抗体混合,利用不同抗体对细胞和骨骼内组织的敏感程度和亲和力的差异,选择抗体种类,制成多种金纳米粒子—抗体复合物。借助复合粒子分别与细胞内各种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下呈现某种特征颜色(如10nm的金粒子在光学显微镜下呈红色),从而给各种组织“贴上”了不同颜色的标签,为提高细胞内组织分辨率提供了各种急需的染色技术。
2.3纳米材料在医药方面的应用
2.3.1纳米粒子用作药物载体
一般来说,血液中红血球的大小为6000nm~9000nm,一般细菌的长度为2000nm~3000nm[7],引起人体发病的病毒尺寸为80nm~100nm,而纳米包覆体尺寸约30nm[8],细胞尺寸更大,因而可利用纳米微粒制成特殊药物载体或新型抗体进行局部的定向治疗等。专利和文献资料的统计分析表明,作为药物载体的材料主要有金属纳米颗粒、无机非金属纳米颗粒、生物降解性高分子纳米颗粒和生物活性纳米颗粒。
磁性纳米颗粒作为药物载体,在外磁场的引导下集中于病患部位,进行定位病变治疗,利于提高药效,减少副作用。如采用金纳米颗粒制成金溶液,接上抗原或抗体,就能进行免疫学的间接凝聚实验,用于快速诊断[9]。生物降解性高分子纳米材料作为药物载体还可以植入到人体的某些特定组织部位,如子宫、阴道、口(颊、舌、齿)、上下呼吸道(鼻、肺)、以及眼、耳等[10]。这种给药方式避免了药物直接被消化系统和肝脏分解而代谢掉,并防止药物对全身的作用。如美国麻省理工学院的科学家已研制成以用生物降解性聚乳酸(PLA)制的微芯片为基础,能长时间配选精确剂量药物的药物投送系统,并已被批准用于人体。近年来生物可降解性高分子纳米粒子(NPs)在基因治疗中的DNA载体以及半衰期较短的大分子药物如蛋白质、多肽、基因等活性物质的口服释放载体方面具有广阔的应用前景。药物纳米载体技术将给恶性肿瘤、糖尿病和老年痴呆症的治疗带来变革。
2.3.2纳米抗菌药及创伤敷料
Ag+可使细胞膜上蛋白失去活性从而杀死细菌,添加纳米银粒子制成的医用敷料对诸如黄色葡萄球菌、大肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用。
2.3.3智能—靶向药物
在超临界高压下细胞会“变软”,而纳米生化材料微小易渗透,使医药家能改变细胞基因,因而纳米生化材料最有前景的应用是基因药物的开发。德国柏林医疗中心将铁氧体纳米粒子用葡萄糖分子包裹,在水中溶解后注入肿瘤部位,使癌细胞部位完全被磁场封闭,通电加热时温度达到47℃,慢慢杀死癌细胞。这种方法已在老鼠身上进行的实验中获得了初步成功[11]。美国密歇根大学正在研制一种仅20nm的微型智能炸弹,能够通过识别癌细胞化学特征攻击癌细胞,甚至可钻入单个细胞内将它炸毁。
2.4纳米材料用于介入性诊疗
日本科学家利用纳米材料,开发出一种可测人或动物体内物质的新技术。科研人员使用的是一种纳米级微粒子,它可以同人或动物体内的物质反应产生光,研究人员用深入血管的光导纤维来检测反应所产生的光,经光谱分析就可以了解是何种物质及其特性和状态,初步实验已成功地检测出放进溶液中的神经传达物质乙酰胆碱。利用这一技术可以辨别身体内物质的特性,可以用来检测神经传递信号物质和测量人体内的血糖值及表示身体疲劳程度的乳酸值,并有助于糖尿病的诊断和治疗。
2.5纳米材料在人体组织方面的应用
纳米材料在生物医学领域的应用相当广泛,除上面所述内容外还有如基因治疗、细胞移植、人造皮肤和血管以及实现人工移植动物器官的可能。
目前,首次提出纳米医学的科学家之一詹姆斯贝克和他的同事已研制出一种树形分子的多聚物作为DNA导入细胞的有效载体,在大鼠实验中已取得初步成效,为基因治疗提供了一种更微观的新思路。
纳米生物学的设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。纳米机器人是纳米生物学中最具有诱惑力的内容,第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗(疏通脑血管中的血栓,清除心脏脂肪沉积物,吞噬病菌,杀死癌细胞,监视体内的病变等)[12];还可以用来进行人体器官的修复工作,比如作整容手术、从基因中除去有害的DNA,或把正常的DNA安装在基因中,使机体正常运行或使引起癌症的DNA突变发生逆转从而延长人的寿命。将由硅晶片制成的存储器(ROM)微型设备植入大脑中,与神经通路相连,可用以治疗帕金森氏症或其他神经性疾病。第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置,可以用其吞噬病毒,杀死癌细胞。第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。这种纳米机器人一旦问世将彻底改变人类的劳动和生活方式。
瑞典正在用多层聚合物和黄金制成医用微型机器人,目前实验已进入能让机器人捡起和移动肉眼看不见的玻璃珠的阶段[13]。
纳米材料所展示出的优异性能预示着它在生物医学工程领域,尤其在组织工程支架、人工器官材料、介入性诊疗器械、控制释放药物载体、血液净化、生物大分子分离等众多方面具有广泛的和诱人的应用前景。随着纳米技术在医学领域中的应用,临床医疗将变得节奏更快,效率更高,诊断检查更准确,治疗更有效。
论文关键词:纳米材料生物医学应用
医用高分子材料研究篇3
关键词:纳米羟基磷灰石;骨科应用;抗癌性能;研究分析
纳米羟基磷灰石具有良好的生物特性,能够极好的与物质相容,并且可以承担巨大的力量进而满足使用性能。在医学骨科治疗的过程中使用纳米羟基磷灰石的几率比较大,一般纳米羟基磷灰石是作为人工骨材质出现在实际的临床治疗之中。伴随我国科学技术发展,对于纳米羟基磷灰石的研究也越来越细致,不断发现纳米羟基磷灰石的新功能,最吸引医学工作者和人们关注的特性就是可以进行抗癌干预治疗。本文针对纳米羟基磷灰石的实际研究历程进行分析,关注纳米羟基磷灰石在医学领域的应用,观察纳米羟基磷灰石对人体骨质生长的良好作用进行进一步的探究,希望为人类社会抗癌工作作出良好贡献。
1纳米羟基磷灰石概述
1.1纳米羟基磷灰石表面特征田家明等人在《纳米羟基磷灰石在生物医学领域中的应用研究》中表明了,纳米羟基磷灰石是从脊椎生物的身体内提取的一种无机的矿物质,在提取的过程中主要寻找生物的骨质和牙齿等身体部位中的纳米羟基磷灰石,纳米羟基磷灰石是一种单晶的六方柱状结构物质,用分子式表示具体的内容为Ca10(PO4)6(OH)2。这种物质属于微溶与纯净的水质的分子结构,在常见的物质中属于弱碱性的,PH值小于9大于7。在纳米羟基磷灰石中存在晶体细胞包含两个氢氧根离子,十个正2价的钙离子,以及六个磷酸根离子[1]。根据摩尔比结果显示,纳米羟基磷灰石的数值为1.67。在纳米羟基磷灰石晶体细胞的四个角的位置上含有氢氧根离子,可能会与水分子形成氢键,进而减弱了纳米羟基磷灰石表面的性能。磷酸根离子则在纳米羟基磷灰石表面形成了固定网络,能够促进纳米羟基磷灰石的稳定性。钙离子存在于纳米羟基磷灰石内部,可能与金属离子产生置换的可能,还可能与其他成分的氨基酸、蛋白质能物质融合发生反应。纳米羟基磷灰石释放定量的钙离子就可以与人体骨质生长相结合,生成新的骨质细胞,并且能够衣服在晶体表面,促进网络形式的覆盖充分发挥生物功能[2]。
1.2纳米羟基磷灰石生物学特性在田家明等人的研究基础上,李宾杰等人也曾在《纳米羟基磷灰石的制备及在生物医学上的应用研究进展》的研究中提出,纳米羟基磷灰石的生物学特性依附其分子结构而形成,因为纳米羟基磷灰石的大小区间为11~99nm之内,纳米羟基磷灰石是存在于原子团内并与宏观物质进行交融的微粒,因此,在使用纳米羟基磷灰石的过程中能够明显的促进人体骨质内细胞的增长和下降趋势,对于实际的原子数量和分子张力具有重大影响。采用人工技术进行纳米羟基磷灰石仿人体骨质的制造和研究,对于患者实际的身体机能有良好的促进和恢复作用。
2纳米羟基磷灰石与人体骨质代谢
在研究基础上李宾杰等人的研究基础上,温从游等人在研究报告《纳米羟基磷灰石/聚酰胺66复合材料的研究及应用》中提出,人体骨质的代谢功能需要经过骨质的形成和骨质的营养吸收等过程,在成长或者是破裂重组的过程中可以不断结合人体骨质细胞的参与,通过细胞成长满足人体骨质的新陈代谢。纳米羟基磷灰石与人体的骨质新陈代谢具有紧密的关联,其中包括骨质与人体成骨细胞的相互作用、于破骨细胞的相互作用,以及与人体再血管化的作用转移。首先,纳米羟基磷灰石与成骨细胞存在紧密联系,成骨细胞需要通过人体骨质细胞的不断增长、分裂,以及扩散形成新的骨质成分,经历过不同节段的成熟保证了人体骨质的生长和未来的细胞引导功能。其次,纳米羟基磷灰石与破骨细胞相互作用而进一步进行人体骨质代谢运作。破骨过程是另外一种骨质代谢程序,经理了不同的阶段满足了骨质溶解和消化的需求,经过石晶体的改变和释放形成新的介质从而引导人体骨质发生改变,促进人体骨质代谢正常流转。再次,纳米羟基磷灰石的再血管化也与人体骨质的代谢具有紧密的联系,是通过对骨质移植后的血管再生和融合进行操作的重要环节,对于人体的健康恢复具有重要作用,引导患者自身骨质进一步恢复和重建[3]。
3纳米羟基磷灰石在临床医学中的实际应用
3.1纳米羟基磷灰石在骨科治疗中的应用在张金超等人的研究报告《碳纳米材料在生物医学领域的应用现状及展望》中表述了关于纳米羟基磷灰石在骨科治疗中的应用内容。因为纳米羟基磷灰石具备良好的生物交融性能,并且具有相当的生物活跃性,所以在当今医学临床治疗的过程中被广泛应用。医学领域主要使用纳米羟基磷灰石进行骨科疾病的治疗,制造人造骨质的同时也代替人体组织进行病处修复,通过纳米羟基磷灰石强度的和柔韧性的优势进行临床医学使用,有效的促进了患者的病症恢复[4]。
3.2纳米羟基磷灰石抗癌性质及功能在董黎静等人的研究著作《羟基磷灰石及其复合材料对重金属的吸附研究进展》中也曾提出了关于纳米羟基磷灰石抗癌性质及功能的研究,发现纳米羟基磷灰石对于骨科医学发展具有历史性的意义,纳米羟基磷灰石不但能够成为人工骨质的重要材料,还对人们出现的癌症病症有极好的抵抗作用。通过纳米羟基磷灰石的分化作用促进人们骨质细胞的再生长,进而实现对患者新生的骨质成分以及血液系统充分维护,满足常规药物无法达成的治疗功能,为医学抗癌事业的发展贡献巨大力量[5]。
综上所述,关注人们生命健康的治疗和护理工作发展,首先应该关注科学的治疗方法和治疗材料的研究工作,骨科疾病是目前为止最影响人们正常生活的疾病种类之一,关注骨科疾病的治疗,并积极的协助患者恢复身体健康是每一位医学工作者共同的心愿。通过本文研究使医学工作者坚信,不断的研究和分析纳米羟基磷灰石的实际功能作用,对于未来医学事业的发展具有重要意义,未来纳米羟基磷灰石的应用也会越来越广泛。
参考文献:
[1]田家明,张波,闫清丽,等.纳米羟基磷灰石在生物医学领域中的应用研究[J].辽宁化工2012,11:828-830+833.
[2]李宾杰,姚素梅,李淑莲,等.纳米羟基磷灰石的制备及在生物医学上的应用研究进展[J].化学研究2013,05:90-96.
[3]温从游,孟纯阳,蒋电明.纳米羟基磷灰石/聚酰胺66复合材料的研究及应用[J].中国组织工程研究,2014,03:464-469.
医用高分子材料研究篇4
【关键词】生物电子学;研究生选修课;教学探索
PostgraduateCourseofBioelectronicsOpenedandTeaching
SUShao
(SchoolofMaterialsScienceandEngineering,NanjingUniversityofPosts&Telecommunications,NanjingJiangsu210023,China)
【Abstract】“Bioelectronics”isanewlyelectivecourse,whichhasopenedfordifferentpostgraduates.Bioelectronicisanemergingandfascinatinginterdisciplinary,coveringmanyareasofresearch,hasbecomearesearchhotspot.Thiselectivecourseaimstobroadengraduateresearchhorizons,learnaboutthelatestfrontiorresearchanddevelopstudents'innovativespiritandoverallquality.Inthispaper,wediscusstheexperiencesoftheresearchfieldsofbioelectronics,referencebooks,teachingobject,coursecontentandteachingmethodsandprospectthefuturedevelopmentoftheelectivescourse.
【Keywords】Bioelectronics;Postgraduateelectivecourse;Teachingexplore
0前沿
生物电子学(Bioelectronics)是以生物学和电子学为代表但又涉及化学、物理、材料及信息技术等许多学科和高新技术相结合的一门新兴交叉学科。电子信息科学技术和生物科学(含医学科学)是十分重要的两个学科领域,它们对科学技术进步和经济发展,乃至于对人类的社会生活方式都将产生深刻而重要的影响。生物电子学的发展充分体现了上述两个学科的相互依赖和和相互促进的关系。生物电子学自20世纪50年代诞生以来,发展迅速,领域不断拓宽,地位日益重要,已经展示了广阔的发展前景[1-2]。子学的研究领域大致可以包括如下7个方面:(1)生物信息检测;(2)生物医学信息处理;(3)生物系统建模和仿真;(4)场与生物物质的作用;(5)分子和生物分子电子学;(6)生物信息学;(7)生物医学仪器。近20年来,随着各种新原理、新技术和新方法不断地应用到生物电子学的研究中,生物电子学的发展日新月异,目前越来越的科研工作者聚集生物电子学方面的研究。
1研究领域
生物电子学作为新兴的交叉学科,发展迅猛,涉及多个研究领域。国外的大学很早就开展生物电子学的相关研究。如英国的克兰菲尔德大学,其生物电子学方面的研究就包括生物信息学、生物传感器与生物诊断、环境与健康、环境与自然、环境与安全、智能材料和转化医学等。我国在1985年,由韦钰院士创立了分子与生物分子电子学实验室,通过20年的发展,2002年,东南大学生物电子学国家重点实验室开始建设。目前,该重点实验室的发展目标是瞄准生物电子学的国际发展前沿,开展应用基础研究,侧重综合应用信息科学领域的最新成果,发展生物领域研究的新方法和新技术,并用于探究生命过程的本质,揭示重大疾病的机制,为医学发展开辟新途径。该国家重点实验室以生物信息材料与器件、生物信息获取和传感、生物信息系统和应用为主要研究方向,研究内容涉及分子(纳米)有序材料及其制备、分子有序结构的组装与表征、分子/纳米器件、生物/纳米材料及其应用、植入式电子器件、单分子与单细胞检测、生物传感器、微阵列芯片技术、微流体生物芯片、生物信息学、仿生信息处理系统及应用、脑信息系统的建模和应用等。
2教材选择
本课程是专业选修课,开设对象是低年级的硕士研究生和博士研究生。相对于本科生,研究生具有良好的自学能力和独立思考能力,因此,如何选择实用、全面和专业的参考教材尤其重要。目前,国内还没有《生物电子学》课程的材,很多医学专业的高等院校选用的是生物电子医学方面的教材,并不能很好的满足普通高校本科生或者研究生的课程需要。因此,在依据本学校和本学院的专业设置(材料物理、材料科学和信息显示等专业),以及本学院教师的科研方向,选用了以色列著名科学家ItamarWillner为主编,汇集了众多在生物电子学方面的专家编著的《Bioelectronics》[3]教材,从生物电子学的定义,生物电子学的发展和研究领域等方面,并结合当前热门生物电子学方面的科研资料和科研文献,多方位、多角度的向研究生展示生物电子学的研究内容、研究方向、研究前沿和研究热点。这样的安排,让研究生从一开始就接触科学前沿,开阔了眼界,更好的领悟科学的真谛。
3授课对象
《生物电子学》是硕士和博士研究生的专业选修课程,目前选修本门课程的学生的专业跨度很大,有材料化学、材料物理和高分子材料与工程等不同专业。我们开设本门课程的宗旨是让不同学生都了解什么是生物电子学、当前生物电子学发展到怎样的阶段和生物电子学涉及的研究领域。通过对这些方面的学习,结合各自的研究背景,将生物电子学领域的研究内容糅合到各自的科学研究中,实现科学创新,更好更快的进行科学研究。
4授课形式和课程内容
本门课程为研究生专业选修课,在授课形式和课程内容上有别于本科生的专业必修课。在充分考虑研究生具有良好的自学能力和理解能力的基础上,我们决定将本门课程的课时设置为32学时,分8次课完成。课题上以授课和讨论两种主要形式进行,设为8个不同的生物电子学版块,以讲座形式进行教学,并同时让研究生依据各自的研究背景,以每次课所要将的内容为主线,做好课下准备,带着问题有针对性的进行实时讨论。本着“科学性、系统性、实用性”的原则,我们确立了具体的授课内容,主要包括以下内容:概论部分、生物传感器、生物芯片、活体生物发光和荧光成像技术、微流控芯片体外诊断、临床即时检测仪器和DNA纳米技术等。在讲授这些专题的同时,结合大量的最新科研的前沿和热点文献,循序渐进,生动直观的介绍生物电子学方面的知识,使课堂教学更为生动、丰富。
5教学方法
为了使研究生能在有限的课时内掌握老师所教授的内容,并能学以致用,就必须要运用灵活多样的教学方式,如:多媒体教学、互动式教学、理论联系实际等方法。由于生物电子学涉及多个研究领域,书本上的基础知识往往较为枯燥、抽象,不能很好的吸引研究生的求知欲望。因此,本门课程主要以多媒体教学为主,辅以互动式教学。在讲解科学前沿和热点时,利用多媒体技术在功能上、空间上及时间上交互的便利性,直观生动的将各种原理示意图、实验结果甚至影像资料展示给研究生,将抽象、枯燥的科研问题直观、形象又深入浅出的解释给学生,激发学生的学习兴趣。
为了提高研究生的学习主动性,让研究生参与到整(下转第24页)(上接第16页)个教学环节中,此时教师与学生不再说简单的传授与接受的关系,而是双边的互动关系。在课堂上除了老师有针对性地向学生提问外,学生也可以随时向老师发问,通过互动式教学,使学生最大限度地参与教学活动,积极思维,培养了主动探索、勇于创新的意识。
6结语
目前《生物电子学》这门研究生选修课程还处于不断探索和改革阶段,作为专业教师,责任任重而道远,今后除了要不断提高自身的业务素质,不断实践、不断总结,还要依据不断变化的科研环境和教学环境,及时与学生沟通,把《生物电子学》课程的教学工作开展的更有深度、更有效果、更受研究生喜爱,为研究生开拓眼界、提升创新思维作出贡献。
【参考文献】
[1]韦钰.电子科技导报[N].1998,11,1-4.
医用高分子材料研究篇5
1.毕业设计(论文)综述(题目背景、研究意义及国内外相关研究情况)
1.1背景、意义:
生物材料作为生命科学研究最为重要的一个领域,当今已引起越来越多材料界科学工作者和临床医生的兴趣,生物材料是一种植入躯体各系统或与各系统结合而设计的物质,它与躯体不起药理反应。这一定义规定了生物材料是指置换或恢复活组织及其功能,对机体是惰性的植入材料[1]。
目前运用于医用的材料主要有高分子材料、陶瓷材料和金属材料。生物高分子、陶瓷材料由于本身固有缺陷,作为承力的硬组织修复替代材料还有相当的距离,所以金属医用材料仍然是当前临床上最主要的硬组织植人材料,而且在将来的相当长的一段时间内,其地位是不可替代和动摇的.医用金属材料主要有不锈钢、钛合金和镁合金医用植入材料。
而医用不锈钢中的镍(Ni)离子就是一种众所周知的有害元素,除了对人体产生过敏反应外,还存在致畸、致癌的危害性[2~4]。钛合金在性能方面虽然具有明显的优势,但由于其价格较贵(相当于不锈钢的两倍),并且会在使用中产生应力遮挡效应[5],从而很难得到广泛使用。因此镁合金有望成为最主要的金属医用植入材料。
镁合金作为医用植入材料,与现在已投入临床使用的各种金属植入材料相比,具有以下突出的优点:
1)资源丰富,价格低廉,金属镁锭的价格在2万元/吨以下,而钛锭的价格在6万元/吨以上[6];
2)良好的生物相容性和生物可降解性[7,8];
3)是人体内仅次于钾、钠、钙的细胞内正离子,参与蛋白质合成,能激活体内多种酶,调节神经肌肉和中枢神经系统的活动,保障心肌正常收缩。
镁几乎参与人体内所有新陈代谢过程[9]。初步的细胞毒性研究表明:镁对于骨髓细胞的生长没有抑制作用,也没有发现细胞溶解现象[10]。最近还有研究者指出:金属镁可以促进骨细胞的形成,加速骨的愈合等。
1.2国内外研究情况:
目前,国内将镁及镁合金作为生物医用材料的研究和应用还很少,主要是因为镁的化学性质极为活泼,其标准电极电位为-2.37V。镁在腐蚀介质中产生的氧化膜疏松多孔,不能对基体起到良好的保护作用,尤其是在含有Cl-的腐蚀介质中,MgO表面膜的完整性会遭到破坏,导致腐蚀加剧[6]。
所以,将镁及镁合金作为长期植入材料还存在一定的困难。但随着研究的深入,发现通过提高镁及镁合金的耐蚀性,可以实现其作为长期植入材料的应用[12]。
另外,根据镁及镁合金的耐蚀性能较差的特点,可以将其发展成为生物医用可降解植入材料及器件,如可降解心血管支架及周边支架、内固定用接骨板和骨钉以及组织工程用支架材料等[13]。
有研究者提出将镁及镁合金作为可降解血管支架材料[14],镁是人体必需的常量元素之一[15],因此其腐蚀产物是生物可吸收的,力学性能也符合植入材料要求。
而作为支架,由于血液的流动性,降解过程中产生的氢气可能不会成为发展可降解金属镁支架研究面临的主要问题。BHeublein[14]将镁合金植入鼠心脏血管处,研究了镁合金在鼠体内的炎症反应和植入期间因金属腐蚀而生成氢气的影响,认为生物可吸收镁基合金有可能成为一种用于制作心血管支架的新型材料。
但在研究这种新材料时必须注意,体外模拟可降解实验过程并不能用于预测体内腐蚀情况[16],且体内情况又相当复杂,因此镁作为可降解材料的应用将面临较大的困难。
2.本课题研究的主要内容和拟采用的研究方案、研究方法或措施
2.1课题主要内容简介:
按照一定的配比配置好所要熔炼的原料,将配比好的合金成分熔炼凝固,根据《稀土在镁及镁合金中的应用》[17]中的阐述,采用RE损耗量最低的溶剂进行熔炼,对熔炼好的镁合金进行压缩,制成一定形状和尺寸的热压板材料,并对热压板材料进行宏观与微观的金相分析,观察其内部的相组成及各相的形状。
将各试样切割成若干小块分组做:均匀化处理、淬火、和时效处理。之后将各不同热处理方法处理过的试样也进行金相分析并且与先前的铸态分析结果对比,得出不同热处理状态下的镁合金功能材料组织的变化情况。并根据组织的变化确定最佳的熔炼方法和热处理工艺。
2.2研究方案:
通过镁合金热压板材料在不同热处理状态下组织结构分析,针对镁合金热压板材料的组织缺陷改进热处理工艺,为进一步探索镁合金热压板材料作为优良的生物植入体提供一定的理论基础。
2.3研究方法:
将配比熔炼后的镁合金材料分为三组,一组作为对比样,另外的分别做固溶处理后淬火处理、固溶处理后时效处理,通过对每组试样都做金相、SEM能谱分析。仔细对比分析材料显微组织的变化情况,测量晶粒度的大小,观察第二相数量和形态及其与热处理前比较发生的改变。通过透射电镜观察材料中亚结构的变化情况,例如位错组态、孪晶、层错等,了解第二相形态、分布及其尺寸类型等进行物相鉴定,确认第二相的成分,得
出一种较好的热处理工艺。
3.本课题研究的重点及难点,前期已开展工作
3.1研究的重点及难点:
本课题研究的重点是通过对不同热处理过程后的镁合金的热压板材料的晶粒度的测量,相组成的鉴定等组织分析来确定一种热处理工艺,使得用该工艺得到较均匀、致密的镁合金组织而运用于人体,作为支架材料。
其难点是热处理所需的最佳时间长度还在探索之中;用于做金相分析和透射分析的试样制备有难度,特别是金相试样的抛光和透射试样的最终减薄;对透射花样的分析和标定也是难点之一。
3.2前期已开展工作:
已经查阅了相当资料(包括外文资料)并对将要测试的镁合金进行初期试验配比熔炼[18]。
4.完成本课题的工作方案及进度计划
1)第13周:查阅文献资料(包括外文资料),熔炼试样
2)第4周:写开题报告并答辩
3)第511周:实验过程及期中小结报告
4)第1214周:整理实验数据并分析、讨论
5)第1516周:书写论文,准备答辩
参考文献
[1]张其清.生物材料的研究现状及发展方向.普外临床,1997,12(2):67~68.
[2]DenkhausE,SalnikowK.CriticalReviewsinOncologyHematology.42;3526,2002.
[3]CooganTP,LattaDM,SnowET,etal.CRCCriticalRevToxical,1989;19(4)∶341.
[4]ReginaLW,SanfordB,LindaCL.Biomaterials,1999;20∶1647.
[5]Song,G.;Amanda,A.;StJohn,D.MaterialsScienceandEngineeringA,2004,366(1):74.
[6]李龙川,高家诚,王勇.医用镁合金的腐蚀行为与表面改性.材料导报,2003,17(10):29.
[7]SerreCM,PapillardM,ChavassieuxP,etal.Influenceofmagnesiumsubstitutiononacollagen2apatitebiomaterialontheproductionofacalcifyingmatrixbyhumanoxteoblasts.JBiomedMaterRes,1998,42:626.
[8]KuwaharaH,Al2abdullatY,MazakiN,etal.Precipitationofmagnesiumapatiteonpuremagnesiumsurfaceduringim2mersinginHankssolution.MaterTrans,2001,42:1317.
[9]胡庆福.镁化合物生产应用.北京:化学工业出版社,2004.547.
[10]LiLongchuan,GaoJiacheng,etal.Evaluationofcyto2tox2icityandcorrosionbehaviorofalkali2heattreatedmagnesiuminsimulatedbodyfluid.SurfCoatTechn,2004,185:92.
[11]黄晶晶,杨柯.镁合金的生物医用研究.材料导报,2006,4,20(4):67~68
[12]任伊宾,黄晶晶,杨柯,等.CNPat,200510046360.6.
[13]HeubleinB,RohdeR,KaeseV.Biocorrosionofmagnesiumalloys:anewprincipleincardiovascularimplanttechmology.Heart,2003,89:651.
[14]赵霖,鲍善芬.镁在生物医学中的应用,1992,6(3):138.
医用高分子材料研究篇6
南北高校各有优势
2011年,北京科技大学、北京航空航天大学、大连理工大学、苏州大学和南京理工大学五所高校开始招收纳米材料与技术专业本科生。五所大学中,北京科技大学、北京航空航天大学和大连理工大学三所北方高校在材料科学上属传统名校,而南方院校苏州大学和南京理工大学把纳米材料成果产业化,形成了自己的特点。
北方三所高校算是材料科学与工程领域传统名校,值得注意的是,它们却均未设置专门的纳米材料研究机构,更多的是依托原有的强势学科,在传统材料研究领域引入纳米科技,寻求突破。
北京科技大学
北京科技大学原名北京钢铁学院,曾被誉为“钢铁摇篮”,其材料科学研究侧重点是金属材料。除了材料学院这个重点学院外,从事材料科学研究的还有新金属国家重点实验室、高效轧制国家工程研究中心、国家材料服役安全科学中心等机构,侧重点也不局限于金属材料,在无机非金属、高分子、生物医药材料等方面亦有建树。
目前,北科大纳米材料课题组主要研究纳米材料制备与表征、纳米材料改性、功能纳米材料等方面。此外,亦有部分老师研究纳米加工、纳米组装、纳米器件等应用方向。
北京航空航天大学
与北科大不同,北航材料学院在北航不属于重点学院,规模较小,师资力量仅百来人,这决定了北航材料学院的研究方向不会太广。作为航天航空院校,北航材料学院也有自己的优势,正在筹建的航空科学与技术国家实验室(航空领域最高级别实验室),它的侧重点在金属材料、树脂基复合材料及失效分析、先进结构材料、新型功能材料等方面。
在纳米材料上,北航材料学院重点关注纳米器件和纳米涂层。材料学院的纳米材料研究发展趋势可能是纳米技术在航天航空领域的应用。
大连理工大学
大连理工大学的材料学院在金属材料、材料加工方面实力强,基于大连的地理位置,材料学院还开设了五年制金属材料工程日语强化班。不过,纳米材料与技术专业并非隶属于材料能源学部,而是化工与环境学部。因而,大连理工大学的纳米材料研究偏化工类,包括纳米粒子合成化学技术、无机纳米功能材料、纳米复合材料等方向。纳米材料与技术专业开设的专业课中,亦有化工原理、基础化学、材料化学等化工类课程。可以说,这是大连理工大学纳米材料与技术专业的一大特色。
与北方三所高校相比,苏州大学和南京理工大学纳米材料与技术专业的发展方向截然不同。两所南方高校均成立多个纳米材料研发机构,在研究方向上,两所高校侧重于纳米材料器件应用,尝试产业化。这些特点可能与江浙一带出现纳米高新技术企业有关。
苏州大学
苏州大学没有材料科学与工程学院,而是材料与化工学部,研究偏向化工,在无机非金属、高分子材料方面实力不错。纳米材料与技术专业并没有开设在材料与化工学部,而是2010年成立的纳米科学技术学院。除了纳米科学技术学院,苏州大学研究纳米材料的机构还有2008年成立的苏州大学功能纳米与软物质研究院、2011年成立的苏州大学-滑铁卢大学苏州纳米科技研究院。其中,以中科院院士李述汤教授领衔组建的功能纳米与软物质研究院已初具规模,它以功能纳米材料和软物质为研究对象,侧重于功能纳米材料与器件、有机光电材料与器件、纳米生物医学技术等,寻求在纳米器件以及新能源、环保、医用等领域的应用。
南京理工大学
南京理工大学由军工学院演变发展而来,其材料科学与工程学院的材料学研究侧重于金属材料及复合材料。不过,南理工是国内最早开展纳米材料与技术研究的大学之一,正筹建纳米结构研究中心,研究侧重点是与纳米结构材料相关的分析、材料力学、电化学性能评估等。由南理工化工系和南京部分企业共同支持的南京市高聚物纳米复合材料工程技术中心,研究侧重点是纳米材料制备、应用、纳米催化聚合反应、纳米复合材料,该中心已与江苏部分纳米企业开展纳米技术产业化合作。此外,南理工还共建了金属纳米材料与技术联合实验室。
其他高校纳米特色
上海交通大学
上海交通大学材料科学与工程学院在各类相关排名中居首,教职工200多人,研究侧重点包括金属材料、复合材料、塑性成形、轻合金精密成型等,在中国是材料科学与工程学子公认的梦想学府。其材料学院也涉及纳米材料,比如,复合材料研究所部分老师从事纳米复合材料研究,微电子材料与技术研究所从事纳米电子材料研究。此外,上海交通大学还成立了微纳科学技术研究院,研究方向为纳米生物医学、纳米电子学与器件。生物医药工程学院也开展纳米材料的可控合成与制备、纳米生物材料等方面的研究。
清华大学
与北京航空航天大学相似,清华大学材料科学与工程系是学校名气大于院系实力,每年有数百人争夺材料系不足30个研究生名额。材料系建有新型陶瓷与精细工艺国家重点实验室,研究侧重点以陶瓷材料为主,同时涉及磁性材料、复合材料、电极材料和核材料。在纳米材料方面,清华材料系主要研究纳米材料结构、纳米材料合成和微纳米颗粒等。2010年,清华大学成立了微纳米力学与多学科交叉创新研究中心,主要研究微纳米器件、纳米复合材料在电能存储上应用和微纳米设备研发等。
北京大学
北大材料科学与工程系成立于2005年,教职工10余人,成立之初就把材料科学与纳米技术结合起来,欲在纳米材料与微纳器件方面有所突破。此外,北大成立了纳米化学研究中心,教职工7人直博生却达45人,主要研究领域包括低维新材料与纳米器件、纳米领域的基本物理化学问题。
西北工业大学
西工大是西部材料科学与工程实力最强的院校,其材料学院师资队伍近200人,有凝固技术国家重点实验室和超高温复合材料国防科技重点实验室。因此,其研究侧重点在凝固,复合材料和金属材料的实力亦不俗。在纳米材料方面,西工大成立了微/纳米系统研究中心,致力于航空航天微系统技术、微纳器件设计制造技术、微纳功能结构技术。总之,西工大的纳米材料研究可能集中于纳米器件在航天、航空、航海方面的应用。
留学两大国
纳米技术是交叉学科,包括纳米科技、物理、化学、数学、分子生物学等课程。报考纳米专业或方向的研究生在本科一般学的是材料学、材料物理与化学、凝聚态物理、物理化学等。就留学而言,由于纳米材料处于基础研究阶段,容易;各个国家在纳米材料方面投入大量资金,使得科研经费相对充足,相比于其他专业容易申请奖学金。这两点决定了留学攻读纳米技术专业研究生相对容易。
2000年,美国白宫国家纳米技术计划,美国的纳米技术得到飞速发展。总体上看,美国的纳米技术已经处在纳米技术实用化阶段,而其他各国仍处在纳米技术的基础研究阶段。美国各大高校也争相进入纳米材料各个研究领域——
实力强劲的麻省理工学院在太阳能存储、航空材料、燃料电池薄膜、封装材料耐磨织物和生物医疗设备领域的碳纳米管、聚合纳米复合材料等方面成果显著。
加州大学伯克利分校注重于纳米材料在能源、药物、环境等方面的应用,已卓有成效。
哈佛大学则侧重在生物纳米科技,即生物学、工程学与纳米科学的交叉领域。
康奈尔大学已经在纳米级电子机械设备、碳纳米管应用电池、纳米纤维等方面获得突破。
斯坦福大学重在纳米晶的光学性能、输运性能和生物应用,以及纳米传感器、纳米图形技术等。
普渡大学的纳米电子学、纳米光子学、计算纳米技术,尤其是计算纳米技术全球领先。
纽约州立大学奥尔巴尼分校专注于纳米工程、纳米生物科学,其纳米技术研究中心是全球该领域最先进的研究机构。
莱斯大学在纳米碳材料领域成果显著,在学校的研究人员中,纳米材料研究人员的比重约为四分之一,是美国纳米材料研究人员最多的大学之一。
此外,美国有很多研究纳米技术的实验室,它们比较愿意招中国大学生,这一点也值得注意。
日本算是最早开展纳米技术基础及应用研究的国家,早在1981年,日本政府就建立了纳米技术扶持计划。美国公布国家纳米技术计划前,曾派人去日本做调查。日本纳米技术的研发特点是企业界是主力军,它们试图将纳米技术融入到产业中。比如,日本企业纷纷斥巨资建纳米技术研究机构,同时建立纳米材料分厂实现产业化。此外,企业与大学、科研院所合作,开发纳米技术。比如,富士通和德国慕尼黑大学合作,三菱公司和日本京都大学合作。
与美国在纳米技术基础研究和生物工程技术领域领先不同,日本在精细元器件及材料的制造方面独占鳌头,日本对纳米材料研究的投入不断加大,也使得去日本读纳米专业是一个不错的选择。
Tips:何去何从
纳米材料专业毕业生有三大去处。选择留学深造或进高校、研究院从事研发;进入纳米材料行业企业;进入传统材料企业。