无线网络论文(6篇)
无线网络论文篇1
关键词:无线传感器网络;组成;应用;发展
科技发展的脚步越来越快,人类已经置身于信息时代。而作为信息获取最重要和最基本的技术——传感器技术,也得到了极大的发展。传感器信息获取技术已经从过去的单一化渐渐向集成化、微型化和网络化方向发展,并将会带来一场信息革命。具有感知能力、计算能力和通信能力的无线传感器网络(WSN,wirelesssensornetworks)综合了传感器技术、嵌人式计算技术、分布式信息处理技术和通信技术,能够协作地实时监测、感知和采集网络分布区域内的各种环境或监测对象的信息,并对这些信息进行处理,获得详尽而准确的信息,传送到需要这些信息的用户。
由于WSN的巨大应用价值,它已经引起了世界许多国家的军事部门、工业界和学术界的广泛关注,被广泛地应用于军事,工业过程控制、国家安全、环境监测等领域。
无线传感器网络综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等多种领域,是当前计算机网络研究的热点。
一、发展概述
早在上世纪70年代,就出现了将传统传感器采用点对点传输、连接传感控制器而构成传感器网络雏形,我们把它归之为第一代传感器网络。随着相关学科的不断发展和进步,传感器网络同时还具有了获取多种信息信号的综合处理能力,并通过与传感控制器的相联,组成了有信息综合和处理能力的传感器网络,这是第二代传感器网络。而从上世纪末开始,现场总线技术开始应用于传感器网络,人们用其组建智能化传感器网络,大量多功能传感器被运用,并使用无线技术连接,无线传感器网络逐渐形成。
无线传感器网络是新一代的传感器网络,具有非常广泛的应用前景,其发展和应用,将会给人类的生活和生产的各个领域带来深远影响。发达国家如美国,非常重视无线传感器网络的发展,IEEE正在努力推进无线传感器网络的应用和发展,波士顿大学(BostonUniversity)还于最近创办了传感器网络协会(SensorNetworkConsortium),期望能促进传感器联网技术开发。美国的《技术评论》杂志在论述未来新兴十大技术时,更是将无线传感器网络列为第一项未来新兴技术,《商业周刊》预测的未来四大新技术中,无线传感器网络也列入其中。可以预计,无线传感器网络的广泛是一种必然趋势,它的出现将会给人类社会带来极大的变革。
二、无线传感器网络的定义和特点
无线传感器网络可以看成是由数据获取网络、数据分布网络和控制管理中心三部分组成的。其主要组成部分是集成有传感器、数据处理单元和通信模块的节点,各节点通过协议自组成一个分布式网络,再将采集来的数据通过优化后经无线电波传输给信息处理中心。无线传感器网络操作系统Tiny0S141的研制者,JasonHill博士把WSN定义为:
Sensing+CPU+Radio=Thousandsofpotentialapplication
哈尔滨工业大学的李建中教授将WSN定义为:WSN是由一组传感器节点以自组织的方式构成的有线或无线网络,其目的是协作地感知、采集和处理网络覆盖的地理区域中感知对象的信息,并给观察者。从硬件上看,WSN节点主要由数据采集单元、数据处理单元、无线数据收发单元以及小型电池单元组成,通常尺寸很小,具有低成本、低功耗、多功能等特点;从软件上看,它借助于节点中内置传感器有效探测所处区域的温度、湿度、光强度、压力等环境参数以及待测对象的电压、电流等物理参数,并通过无线网络将探测信息传送到数据汇聚中心进行处理、分析和转发。
WSN与传统传感器和测控系统相比具有明显的优势。它采用点对点或点对多点的无线连接,大大减少了电缆成本,在传感器节点端即合并了模拟信号/数字信号转换、数字信号处理和网络通信功能,节点具有自检功能,系统性能与可靠性明显提升而成本明显缩减。
无线传感器网络具有以下特点:
1、硬件资源有限。WSN节点采用嵌入式处理器和存储器,计算能力和存储能力十分有限。所以,需要解决如何在有限计算能力的条件下进行协作分布式信息处理的难题。
2、电源容量有限。为了测量真实世界的具体值,各个节点会密集地分布于待测区域内,人工补充能量的方法已经不再适用。每个节点都要储备可供长期使用的能量,或者自己从外汲取能量(太阳能)。当自身携带的电池的能量耗尽,往往被废弃,甚至造成网络的中断。所以,任何WSN技术和协议的研究都要以节能为前提。
3、无中心。在无线传感器网络中,所有节点的地位都是平等的,没有预先指定的中心,是一个对等式网络。各节点通过分布式算法来相互协调,在无人值守的情况下,节点就能自动组织起一个测量网络。而正因为没有中心,网络便不会因为单个节点的脱离而受到损害。节点可以随时加入或离开网络,任何节点的故障不会影响整个网络的运行,具有很强的抗毁性。
4、自组织。网络的布设和展开无需依赖于任何预设的网络设施,节点通过分层协议和分布式算法协调各自的行为,节点开机后就可以快速、自动地组成一个独立的网络。
5、多跳(Multi-hop)路由。WSN节点通信能力有限,覆盖范围只有几十到几百米,节点只能与它的邻居直接通信。如果希望与其射频覆盖范围之外的节点进行通信,则需要通过中间节点进行路由。WSN中的多跳路由是由普通网络节点完成的。
6、动态拓扑。WSN是一个动态的网络,节点可以随处移动;一个节点可能会因为电池能量耗尽或其他故障,退出网络运行;也可能由于工作的需要而被添加到网络中。这些都会使网络的拓扑结构随时发生变化,因此网络应该具有动态拓扑组织功能。
7、节点数量众多,分布密集。WSN节点数量大、分布范围广,难于维护甚至不可维护。所以,需要解决如何提高传感器网络的软、硬件健壮性和容错性。
8、传输能力的有限性。无线传感器网络通过无线电波进行数据传输,虽然省去了布线的烦恼,但是相对于有线网络,低带宽则成为它的天生缺陷。同时,信号之间还存在相互干扰,信号自身也在不断地衰减,诸如此类。不过因为单个节点传输的数据量并不算大,这个缺点还是能忍受的。
9、安全性的问题。无线信道、有限的能量,分布式控制都使得无线传感器网络更容易受到攻击。被动窃听、主动入侵、拒绝服务则是这些攻击的常见方式。因此,安全性在网络的设计中至关重要。
三、应用现状
虽然无线传感器网络的大规模商业应用,由于技术等方面的制约还有待时日,但是最近几年,随着计算成本的下降以及微处理器体积越来越小,已经为数不少的无线传感器网络开始投入使用。目前无线传感器网络的应用主要集中在以下领域:
1.环境的监测和保护
随着人们对于环境问题的关注程度越来越高,需要采集的环境数据也越来越多,无线传感器网络的出现为随机性的研究数据获取提供了便利,并且还可以避免传统数据收集方式给环境带来的侵入式破坏。
2.医疗护理
无线传感器网络在医疗研究、护理领域也可以大展身手。罗彻斯特大学的科学家使用无线传感器创建了一个智能医疗房间,使用微尘来测量居住者的重要征兆(血压、脉搏和呼吸)、睡觉姿势以及每天24小时的活动状况。英特尔公司也推出了无线传感器网络的家庭护理技术。该技术是做为探讨应对老龄化社会的技术项目CenterforAgingServicesTechnologies(CAST)的一个环节开发的。该系统通过在鞋、家具以家用电器等家中道具和设备中嵌入半导体传感器,帮助老龄人士、阿尔茨海默氏病患者以及残障人士的家庭生活。利用无线通信将各传感器联网可高效传递必要的信息从而方便接受护理。而且还可以减轻护理人员的负担。英特尔主管预防性健康保险研究的董事EricDishman称,“在开发家庭用护理技术方面,无线传感器网络是非常有前途的领域”。
3.军事领域
由于无线传感器网络具有密集型、随机分布的特点,使其非常适合应用于恶劣的战场环境中,使其非常适合应用于恶劣的战场环境中,包括侦察敌情、监控兵力、装备和物资,判断生物化学攻击等多方面用途。
4.商业化用途
无线传感器网络还被应用于其他一些领域。比如一些危险的工业环境如井矿、核电厂等,工作人员可以通过它来实施安全监测。也可以用在交通领域作为车辆监控的有力工具。尽管无线传感器技术目前仍处于初步应用阶段,但已经展示出了非凡的应用价值,相信随着相关技术的发展和推进,一定会得到更大的应用。从应用的情况来看,北美的状况最好,在楼宇自动化、环境监控等方面,无线传感器网络已经开始大展拳脚。
四、需要解决的问题
就目前的技术水平来说,让无线传感器网正常运行并大量投入使用还面临着许多问题:
1.网络内通信问题。无线传感器网络内正常通信联系中,信号可能被一些障碍物或其他电子信号干扰而受到影响,怎么安全有效的进行通信是个有待研究的问题。
2.成本问题。在一个无线传感器网络里面,需要使用数量庞大的微型传感器,这样的话成本会制约其发展。
3.系统能量供应问题。目前主要的解决方案有:使用高能电池;降低传感功率;此外还有传感器网络的自我能量收集技术和电池无线充电技术。其中后两者备受关注。
无线网络论文篇2
关键词:医院;网络安全;无线网络;安全建设
无线网络是采用无线通信技术实现的网络,它既包括允许用户建立远距离无线连接的语音和数据网络,也包括为近距离无线连接进行优化的红外线技术及射频技术,与有线网络的用途十分类似,最大的不同在于传输媒介的不同,利用无线电技术取代网线,可以和有线网络互为备份。伴随着临床信息化,医院正逐步地实现无纸化、无胶片化和无线化,医院无线网络技术的不断成熟和普及。利用PDA、平板无线电脑和移动手推车随时随地进行生命体征数据采集、医护数据的查询与录入、医生查房、床边护理、呼叫通信、护理监控、药物配送、病人标识码识别等,充分发挥医疗信息系统的效能,突出数字化医院的技术优势,但同时医院无线网络也面临有较大的安全威胁。因此,全面实现医院无线网络安全建设是医院网络建设中较为重要的一个环节。
1无线网络安全建设措施
1.1安全策略集中控制
构建智能化无线网络构架,将无线网络安全控制策略全部集中到网络控制器上进行统一的控制和,包含有:无线电频率管理、无线入侵检测、病毒库、安全加密、入网行为控制等。将无线网络安全策略使用到网络管理上,防止由于无线网络数据被盗而产生的安全信息泄露。
1.2接入点零配置
在日常使用的普通无线网络中,黑客能够通过窃取无线网络接入点的方式获得密码从而进入到无线网络中。在无线网络控制器上对无线接入点进行智能控制,保证本地不保存无线网络接入点的任何数据,并将全部的数据存储到无线网络控制器,在无线网络接入点上实现零配置,这在很大程度上能够提升无线网络运行的安全性,较大程度的降低了黑客窃取无线网络信息的可能性,本地的接入工作量也得到了较大的简化。
1.3病毒入侵防护
首先是准入检查,当无线网络接收器尝试进入到无线网络时,在进行用户认证之前对无线网络系统中防病毒定义、防病毒软件、操作系统补丁等进行全面的检查,若检查未通过则其则禁止进入到无线网络中,也可以将无线网络用户重定到具体的某一台升级服务器上,只有其安装指定的防病毒软件、系统补丁之后才能接入到无线网络中。其次是数据检查,通过了第一步的准入检查之后,通过数据检查才能实现对无线网络数据的有效监控与检查,通过设置对应的策略,将所有用户的数据,进行全面的防病毒数据检查,若通过检查,则进行数据的传输,若不能通过检查,则将数据丢弃,从而全面的实现对无线网络终端的病毒防护。
1.4非法入侵检测
无线网络的访问接入点和有线网络集线器较为类似,为整个网络的中心,其为移动客户端接入到网络的中心节点,可以将其简洁方便的安装到墙壁或者天花板上,仅需要对无线AP能够覆盖的区域进行针对性的设置,就能够连接到无线网络中,这就导致非法的AP可通过设置进入到无线网络中,给无线网络造成较大的安全隐患,出现网络宽带安全和数据安全等相关的问题。例如,当非法的AP用户对合法的无线网络接入点进行侵扰时,常常被误认为AP运行不稳定或者无线电波信号不稳定等相关的情况,严重时会出现无线网络连接中断,而网络管理人员不能在第一时间内收到报警。通过在无线网络中设置非法入侵检测,利用无线网络架构技术,可以在无线网络中设置无线网络入侵模式库,可以将异常的无线网络数据检测出来,显示并记录无线网络入侵格式,自动的开启对应的警报和保护响应。
1.5安全准入控制
首先为身份认证,对无线网络的身份进行行为授权,避免非法授权终端的进入,通过无线网络用户硬盘ID的绑定及无线网络身份权限的授权,从而实现和无线网络安全设备的联动,拒绝未授权用户的访问。其次为设置安全策略,应对无线网络设置统一的安全策略。当无线网络终端接入到无线网络后,立刻进行多策略安全检查,例如进行注册表、进程检查,防病毒软件、补丁监测等。动态策略管理提供可定制、可扩展的安全策略,可分组织和角色灵活实施;提供多种安装策略并基于系统环境选择安装,及时、主动消除各种安全缺口;提供上网行为审计、USB移动存储设备、系统进程监控等安全策略,对用户违规行为进行审计和取证,帮助提高用户安全意识,保障IT资源的合理使用。系统自动收集终端软、硬件资产信息,跟踪资产变更,实现资产管理IT化,保障信息资产可控可管。
2医院无线网络安全建设应用实践
2.1无线网络拓扑结构
某三级甲等医院在医院内建设了无线网络,从而保证医院内无线网络的全覆盖,为医院内网络用户提供一个便捷安全的网络环境。
2.2无线网络设计与部署
无线网络控制采用有源以太网作为交换机,采用了大容量的无线AP,接入点采用智能零漫游无线接入。POE网络交换机采用了1000M以太网网络连接,数据传输采用了大容量无线AP,利用专用的超柔性馈线实现对功率分配器的连接,智能单元通过穿墙进入室内,从而实现医院内无线信号的全覆盖,室内的大容量无线AP可通过放装的方式较好的达到了医院开放式区域内部对无线信号覆盖的需求。
2.3无线控制器冗余备份
在进行无线网络控制器设置时,采用了N+1冗余集群备份技术,将其中的一台控制器作为中心控制器,剩下的N台控制器作为辅助控制器。当进行无线网络的初始化时,仅仅主控制器能够进行AP注册请求,在主控制器内实现无线网络的协议配置和接入点控制,并将无线网络备份控制信息传输给每一个AP,然后每一个AP可以通过备份构建一条虚拟的WAP网络,当无线网络出现网络切换时,网络切换均在50mm之内,保证用户体验良好不会出现掉线情况。
2.4非法信号监测
无线网络利用智能无线AP,设置2种模式实现对非法电磁信号的监测,其一为对AP每隔一定的时间进行在线安全扫描;其二为将AP设置为连续监控的无线网络安全监控扫描模式。通过设置上述2种方式,智能无线AP按照预先的设置实现对周边环境中所有的MAC地址的检测,可实现对无线网络服务集标示、通道信息的全面安全检查。对未经授权的AP可实现自动识别和警告,从而更好的防止非法信号的侵扰。
2.5认证鉴别机制
为了更好的保证无线网络数据的安全性,需对无线网络的接入点进行准入认证设置,本次无线网络构建采用了Mac和Web认证方式,因为操作系统差异化,对不同类型的移动终端,采用了不同种类的操作系统,另外针对Web认证系统兼容性较为局限的特点,在进行Web认证鉴别时,通过将MAC地址绑定的方式进行了双重认证鉴别,从而在医院内实现了网络安全全部鉴别,当移动终端被授权之后,只有获得CA安全证书,并保证和MAC地址一致后才能进入到无线网络内,并通过设置双重认证鉴别的方式,来实现对无线网络安全身份的识别,拦阻了外来非法无线终端的接入。
3结论
综上分析,在医院内部增强自身的无线网络安全建设对于保证自身无线网络的正常使用有着非常重要的作用。因此,医院网络维护人员,应结合本院无线网络使用方式与特点,建立针对性的无线网络安全保护措施,使无线网络更好的为医院服务。
作者:柯传琪单位:福建中医药大学附属第二人民医院
参考文献:
[1]黄波.无线网络技术在医院信息化建设中的应用分析[J].电脑知识与技术,2015(9):43-45.
[2]刘华.锐捷网络医院无线网络解决方案助力总参总医院移动医疗建设[J].中国数字医学,2012(1):67.
无线网络论文篇3
1.1无线传感网络技术很受大众的喜欢与它的高科技的发展是分不开的,而且许多国家也很重视它的发展,世界各国的工业界、高科技界和学术界对无线传感网络的发展展开了猛烈的攻势,希望可以通过靠科技技术的结合实现无线传感网络技术的进步,许多国家还将无线传感网络技术列入国家的重点研究技术,而且一些周刊和杂志对无线网络的评价也很高,认为无线传感网络技术是未来引领世界计算机进步的主要技术。
1.2无线传感网络技术在我国的发展还很缓慢,这主要是由于无线传感网络技术在我国出现的时间比较晚,无线传感网络技术在我国的研究方案中还处在初级阶段,与西方一些发达国家相比,存在严重的滞后性,我国在无线传感网络技术上的研究主要局限在仿真计算和网络协议等,在人们的生活和军事中的应用还很少,而且无线网络现在已经可以用来作环境监测,我国却没有将无线传感网络技术应用到实处。
1.3目前,中国的未来技术研究方向中有几项是专门针对无线传感网络技术进行直接论述的,而且在一些重大会议的决策里面,也将无线传感网络技术列为三大前沿信息技术,无线传感网络技术中的自发组织网络技术和智能感知技术都成为中国重点信息技术研究,无线传感网络技术在我国如此重视的情况下一定会有所成就,无线传感网络技术也成为社会信息技术发展的必然,在我国,信息技术领域广泛地被应用已经成为不争的事实,对人们的生活、工作和社会的发展带来很深刻的影响。
2无线传感网络技术的应用发展
2.1无线传感网络技术在环境监测方面的应用和发展现代社会,人类的生活水平在逐渐的提高,人们对于环境的探讨也越来越重视,环境方面的应用科学也越来越多,传统的环境探索的模式已经不能满足人们对环境探索强烈的欲望,而且关于环境的采集数据的难度也越来越大。无线传感网络技术的出现及时地解决了环境探索方面的难关,无线传感网络技术对户外的野生动物的跟踪、发现和保护做出了巨大的贡献,通过无线传感网络技术,人们能够对各种野生动物的生存成长环境做监测,比如说动物生存环境的气象、洪涝灾害、地球的物理环境、环境的污染状况、大气的监测等等,根据监测的结果采取必要的保护措施和改善措施。
2.2无线传感网络技术在军事领域的应用和发展无线传感网络技术起于军事领域,无线传感网络技术在军事上的应用是它能够在国家的边疆上站岗放哨做警卫,将无线传感网络器安置在国家的边疆防线上,士兵可以直接通过无线传感网络技术对国家边疆进行防御,接受来自不同方向的信息并及时果断地做出相应的措施。无线传感器在军事上的另外一个应用就是可以对目标进行定位,以及时地防范敌军的可能的侵袭和进攻,还可以通过无线传感技术对无人驾驶的车辆进行摆布,战争结束后,无线传感网络还能对战场的破坏性和环境污染程度进行监测并且评估。
2.3无线传感网络技术在家庭生活中的应用和发展无线传感网络技术最贴近人的生活的应用就是在家庭生活中的应用,无线传感网络器可以为人民的生活提供很多方便,并且能够使人们的生活环境更舒适,无线传感网络技术为人们的生活提供比较人性化智能家居,比如说像冰箱、真空吸尘器、录像机和微波炉等,这样用户就可以在远处遥控这些家用产品,而且还能通过无线传感技术在家里的主要房间安装监测器,以便随时控制家里的安全。
2.4无线传感网络技术在医疗卫生行业的应用和发展无线传感网络技术在健康护理人的方面的应用主要是用来对患者和医生的行为进行监测,人的身体里面有很多我们并不知道的生理和心理数据,将无线传感网络技术安装在病人的身上就可以随时观察病人的病情,并得到及时的救治,无线网络传感技术在不久的将来会更加的方便,用途也会更加的多,还能实现医疗的远程遥控。
3结束语
无线网络论文篇4
1网络模型
1.1工业无线网络中的数据模型
如表1所示,EOAM算法面向两类典型的工业紧急数据:1)不可预测的紧急数据(TrafficCategory1,TC1)。TCI具有最高优先级,主要是指紧急安全动作要发送的数据,比如紧急关闭、紧急报警等,具有不可预测、重现率低等特点。2)普通紧急数据(TrafficCategory2,TC2)。TC2的优先级较TC1低,主要包括闭环管理控制、闭环监督控制、开环控制,该类数据具有重现率高等的特点。
1.2超帧模型
超帧(Superframe)由信道(Channel)和时隙(Timeslot)构成,如图1所示。所谓信道,是指无线射频信号发送的媒介,是频段的若干等份;所谓时隙,是指时间的若干等份,时隙大小取决于网络中数据的大小,时隙的数量决定超帧的长度。对于单信道网络,超帧中仅包括一条信道;对于多信道网络,超帧中包括多条信道。本文针对多信道网络,超帧中包括多条信道以及若干时隙。定义信道模型如下:1)将可用信道划分为一个控制信道(ControlChannel,CC)和多个数据信道(DataChannel,DC)。2)为了提高不可预测的紧急数据TC1的实时性和可靠性,本文在数据信道DC中设置一个特殊信道(SpecialChannel,SC),属于TC1和广播数据(BroadcastData,BD)的专用传输信道;同时,采用指示退避机制,使得普通紧急数据TC2也可以选择使用该信道,避免资源浪费,保证信道资源的利用率。定义时隙模型如下。1)为了保证EOAM算法适用于广播通信,将SC的时隙长度T定义为节点发送一个TC1数据包的平均时间与发送一个BD数据包的平均时间的较大值,即T=max{tTC1,tBD},其中:tTC1=tRTS+tCTS+tDATA+tACK,tA表示节点发送一个A包的平均时间,A为各类包的统称。2)为了使得TC1能够利用特殊信道进行实时可靠传输,本文将时隙划分为高优先级指示空间(HighPriorityIndicationSpace,HPIS)和非高优先级指示空间(NotHighPriorityIndicationSpace,NHPIS),其中,HPIS由两个等长的子时隙t0和t1组成,分别用于待发送TC1数据包的节点发送RTS(RequestToSend)和接收CTS(ClearToSend),如图2所示。
2EOAM算法
本章首先介绍适用于单播通信的EOAM算法步骤,并将其扩展到广播通信的情况。EOAM算法的总体思想主要包括3个方面:1)为了保证不可预测高优先级紧急数据的实时性,采用专门的特殊信道进行传输,特殊信道时隙的高优先级指示空间(HPIS)和非高优先级指示空间(NHPIS),以保证紧急数据的优先传输。2)同时为了避免特殊信道时隙的浪费,采用指示机制,在保证不可预测紧急数据的目的节点快速切换信道的同时,使得选择使用特殊信道的普通数据在紧急数据占用信道时能够进行退避,不干扰紧急数据传输,而在特殊信道空闲时能充分利用信道资源。3)为了保证不可预测的紧急数据和广播数据的确定性传输,将特殊信道中时隙的长度设置为发送这两类数据所需平均时间的较大值,保证数据在该时隙长度内完整传输。
2.1单播通信
EOAM中单播通信分为TC2单播通信和TC1单播通信两种情况,分别如图3和图4所示。TC2单播通信过程包括以下步骤:1)当处于睡眠阶段的发送节点S有TC2数据要发送给接收节点R时,S首先开启其无线收发器,然后在CC上侦听。如果S侦听到指示(Indication,IND),且IND中的目的节点地址为自身地址时,S立即切换到SC侦听。2)当R睡眠时间到达后,R通过在CC发送一个声明消息包(Announcement,ANC)来开始一个潜在的数据传输,该ANC中包含R选择的DC序号,例如i,然后R切换到DCi进行侦听。R采用一种基于概率的随机方法来进行信道选择,当R的睡眠时间到达时,它以概率p在所有DC中随机地选择一个DC,而以概率1-p继续睡眠以节省能量。p定义为平均可用DC数A与总DC数K之比;K可由协议设计确定;A=K-λ×(1/P),其中:λ为报文到达速率,P为报文长度服从分布的参数,详细证明过程见文献[15]。如果R在发送ANC前侦听到IND,且IND中的目的节点地址为自身地址时,R立即切换到SC侦听。3)S在CC上收到R发送的ANC以后,S立即切换到DCi,首先检测信道状态,若空闲,则发送一个RTS控制包;若忙碌,则随机退避一段时间后发送一个RTS控制包。如果S在CC上侦听时间Tmax后仍然没有收到R发送的ANC,S主动在CC上发送一个ANC,以避免由于R在CC上等待S发送ANC而导致的死锁问题。4)当R收到RTS后,R发送一个CTS控制包来确认这次预约。当R切换到DC后,如果没有收到来自其他节点的RTS,R则根据自己的占空比切换回CC,然后进入睡眠阶段。5)当S收到CTS后,S利用DATA&ACK的方式与R进行数据传输。当传输完毕后,它们切换回CC,然后进入睡眠阶段。TC1单播通信过程包括以下步骤:1)当处于睡眠阶段的发送节点S有TC1数据要发送给接收节点R时,S首先开启其无线收发器,然后在CC发送IND,之后切换到SC。2)如果R在CC上侦听到IND,立即切换到SC侦听。3)S在子时隙t0发送一个RTS控制包,若此时R在SC侦听到RTS,R在子时隙t1发送一个CTS控制包来确认这次预约。4)若S在子时隙t1收到R发来的CTS控制包,那么就在该时隙接下来的NHPIS利用DATA&ACK的方式与R进行数据传输;若S在子时隙t1没有收到R发来的CTS控制包,那么就在该时隙接下来的NHPIS持续发送IND,然后在下一个时隙的子时隙t0重新发送一个RTS控制包,重复上述过程。
2.2广播通信
EOAM中采用SC发送BD,如图6所示,广播通信过程包括以下步骤:1)当处于睡眠阶段的发送节点S有BD要发送时,S首先切换到SC,然后开启其无线收发器检测SC信道状态。2)如果SC空闲,那么S在接下来的M个时隙内连续发送M个相同的数据包,其中,M可以根据不同WSN的性能需求进行动态地调整,本文为节点的平均邻居数。如果SC忙碌,那么S随机退避一段时间。3)每个节点(包括睡眠节点)在M-1个时隙内都切换到SC上来接收可能发送的BD包,从而S的每个邻居节点都可以在M个时隙内收到BD。
3实验结果与分析
本章从实时性、可靠性和能耗3个角度,与文献[13]所提出的分布式多信道控制算法(DCA)进行仿真比较。仿真环境设置为:将49个节点分布在7m×7m的网络中,节点随机地选择任一邻居节点进行单播通信,数据负载为32B,TC1数据流的个数为5,TC2数据流的个数为20。延迟时间定义为从数据包到达发送节点MAC层开始,直到被接收节点成功接收的时间。图7所示为平均延迟随着信道数的增加而变化的趋势。由于DCA中ClassⅥ为非紧急数据,所以在此不作比较。由图7可知,EOAM中TC1的平均延时一直低于DCA中数据类,这是由于EOAM针对TC1设计了特殊信道以及高优先级指示空间,专门用于TC1数据的紧急及时传输。当信道数较少时,EOAM中TC2的平均延时要略高于DCA中的ClassⅢ,这是由于EOAM是基于占空比机制和随机信道选择机制;然而随着信道数的增加,EOAM中TC2的平均延时逐渐小于DCA的延时结果,这是由于控制信道的饱和问题在DCA中愈加严重,而EOAM基于接收端开始的介质访问机制则在一定程度上避免了控制信道饱和问题。可靠性以包传输成功率表示,即成功传输的报文占总报文数的比例。由图8可知,EOAM能够满足TC1和TC2的可靠性要求;并且,随着信道数的增加,包成功传输率显著增大,最终都能达到0.95~1。能耗定义为成功传输一个字节所消耗的能量。由图9可知,随着信道数的增加,EOAM的能耗逐渐降低,且明显低于DCA的能耗。其中,能量消耗单位为10-7mW·h,这主要由于EOAM采用基于异步占空比的睡眠机制。
4结语
无线网络论文篇5
关键词WSN;车位控制;超声波传感器
1引言
无线传感器网络是一种全新的信息获取和处理技术,在现实生活中得到了越来越广泛的应用。随着通信技术、嵌入式技术、传感器技术的发展,传感器正逐渐向智能化、微型化、无线网络化发展[1]。目前,国内外主要研究无线传感器网络节点的低功耗硬件平台设计拓扑控制和网络协议、定位技术等。这个设计以检测超声波强度的传感器为例,实现了一个无线传感器网络,根据传感器所检测的超声波强弱来决定开启或关闭车位指示灯,从而判断是否有车辆进入检测区域。这种传感器网络综合了嵌入式技术、传感器技术、短程无线通信技术,有着广泛的应用。该系统不需要对现场结构进行改动,不需要原先任何固定网络的支持,能够快速布置,方便调整,并且具有很好的可维护性和拓展性。
2IEEE802.15.4标准
IEEE802.15.4标准[2]适用于低速率、低功耗、低复杂度和短距离数据传输的无线个域网(WPAN)。在网络内的无线传输过程中,采用带冲突避免的载波侦听多路访问机制(CSMA/CA),支持超帧结构和时槽保障机制(GTS)。网络拓扑结构可以是星型网或点对点的对等网。该标准定义了3种数据传输频率,分别为868MHz、915MHz、2.4GHz。前两种传输频率采取BPSK的调制方式,后一种采取0-0PSK的调制方式。各种频率分别支持20kbit/s,40kbit/s和250kbit/s的无线数据传输速率,传输距离在0m~70m之间。本文中采用的是频率为2.4GHz的无线发射模块。
3无线传感器网络的实现
3.1网络平台组建
无线传感器网络平台由超声波传感器模块、微处理器模块、无线发射模块三个部分组成[3],如图1所示。微处理器模块和无线发射模块集成在一块板子上,而超声波传感器模块通过接口与微处理器相连,这样可以通过更换不同的传感器模块来应用于各种场合。
3.1.1超声波传感器模块
由于超声波指向性强,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现[4]。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求。为了使汽车能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。本文所介绍的三方向(前、左、右)超声波测距系统,就是为后台工作人员了解其前方、左侧和右侧的环境而提供一个运动距离信息[5]。
图1无线传感器网络节点结构
图2无线传感器网络节点通信拓扑结构
SL-SRF-25超声波传感器,接上电源,可以单独作为超声波测距使用,由3位LED数码管显示障碍物距离,3位LED数码管采用积木式插装方式,便于调试检查及使用在不同场合。测量范围10cm-250cm,测距小于100cm时,误差是1~2cm.,大于100cm时,误差是4~5cm。SL-SRF-25超声波传感器,还可以指定从单片机I/O端口上输出分段距离检测信号。
3.1.2微处理器模块
处理器模块选择美国加州伯克利大学的Mica2模型节点。节点板上提供如下功能:433MHz中心频率的无线通信接口,通过编程可以定制多种功能:能够提供-20db~10db多种通信功率;能够在曼彻斯特编码方式下提供从0.3kbps~38.4kbps多种传输速率;能够在433M附近设置多种通信频率,频率间隔为76k。它高速和大容量RAM的特性,为处理数据包提供了便利。
3.1.3无线发射模块
无线发射模块采用桑锐电子科技公司的SRWF-501型微功率无线模块射频收发器。该芯片只需极少外部元器件,性能稳定且功耗极低。该收发器提供3个串口3种接口方式,COM1为TTL电平UART接口,COM2为标准的RS-232接口标准的RS-485接口;晶体稳频,内置数字锁相环,频点根据用户需要在300—1000MHz范围内可以灵活设置;自动过滤噪声,简化了用户接口的编程,做到与有线一样方便;“收”“发”自动切换,无需专用的收发控制线,不发数据时为常态“收”状态;发数据时自动转换为“发”状态,“发”完后自动回到“收”;微发射功率:最大发射功率10mW。SRWF-501的选择性和敏感性指数超过了IEEE802.15.4标准的要求,可确保短距离通信的有效性和可靠性。
3.2系统软件平台
选择美国加州伯克利大学开发的TinyOS系统开发环境。TinyDB是TinyOS的查询处理系统,它能够从无线网络中的sensor节点上提取数据和信息。TinyOS为TinyDB提供了一个可视化的JAVAAPI窗口,可以进行实时查询。
3.3组网类型
在本文中,无线传感器网络采取星型拓扑结构(如图2),由一个网络协调器作为中心节点,可以跟任何一个普通节点通信。普通节点上含有超声波传感器对周围环境中的超声波信号强度参数进行测量、采样,将采集到的数据发往中心节点,并且可以对中心节点发来的数据、命令进行分析处理,完成相应的操作。若两个普通节点之间要传送数据则必须经过中心节点,由中心节点把数据传送到相应的节点上。
3.4组网流程
无线传感器网络是一个自组织的网络,如果一个全功能节点被激活,它就可能建立一个网络并把自己设为网络协调器,其它的普通节点可以申请加入该网络[6]。这样就可以建成一个具有星型拓扑结构的无线传感器网络。本文中的无线传感器网络支持超帧结构,网络协调器经过能量扫描、主动信道扫描后,按照设定的参数周期性的发送信标帧。普通节点首先经过能量扫描和被动信道扫描后,获取信标帧中包含网络特征的参数,如信标序号、超帧序号和网络标号等。通过同步请求与网络协调器同步,再通过匹配请求与网络协调器关联。在与网络协调器关联的过程中,网络协调器为每个请求关联的普通节点分配16位的短地址[7]。这样在以后的数据传送中就可以用短地址进行通信,提高通信效率、降低发射中的能量消耗,从而延长网络的使用寿命。
3.5数据传输机制
3.5.1数据格式
在IEEE802.15.4标准中定义了四种帧,分别是信标帧、数据帧、命令帧、确认帧[2]。
(1)信标帧:用以网络协调器在支持超帧结构的第一个时槽向其临近节点广播信标,当附近的节点接受到信标帧后就可以申请加入该网络。
由于本文中的无线传感器网络系统采用相对简单的星型拓扑结构,在信标帧的结构上与IEEE802.15.4标准有所不同:在信标帧的地址域中仅包含源节点的网络标号和短地址,不包含目的节点信息(因为采用广播方式发送)。
(2)数据帧:用来传送含有超声波度信息的数据。
在地址域中包含源节点和目的节点的网络标号和短地址。由于数据帧的传送方向有两种:从普通节点传向中心节点和从中心节点发送给普通节点。
(3)命令帧:用于组建无线传感器网络、传输同步数据等。命令帧在格式上和其它类型的帧没有太多的区别。
(4)确认帧:用以确认目标节点成功接收到数据帧或命令帧。当目标节点成功接收到数据帧或命令帧后,就发送一个确认帧给发送方。发送方接收到这个确认帧说明发送成功。若在规定的时间内没有接收到确认帧,则重发该数据帧或命令帧。
在帧控制域中定义了帧的类型为确认帧。确认帧的序列号要与被确认帧相同,并且负载长度为零。确认帧紧接着被确认帧发送,不需要使用CSMA-CA机制竞争信道[8]。
3.5.2传输流程
在整个无线传感器网络中,采取的是普通节点定时读取其传感器上的超声波数据,并将超声波数据发送给中心节点。中心节点对接受到的数据进行处理后传送给相应的节点用以控制其上的车位置位标志。首先,网络协调器对接收到的数据帧进行检验,图2中的"中心节点判断"是判断是否为指定节点的传感器数据。若接收的数据是指定节点上的数据,则将该数据与一个超声波度阈值进行比较来设定控制变量(用来控制车位的开关状态)[9]。反之,则不进行发送操作。然后,判断带有空闲的节点是否加入网络。若在网络中找到带有空闲的节点,则中心节点将控制变量作为数据帧负载发送给它。反之,则不发送带有控制变量的数据帧。
4结束语
在我们设计的无线传感器网络车位控制系统中,普通节点将它采集的超声波数据发送给网络协调器,网络协调器将含有控制变量的数据帧发送给带有车位占空标志接点的同时,还可以通过串口将超声波度数据传送给计算机。通过计算机上的后台软件,可以监控超声波度信号的变化。从超声波传感器可以判断车位的占用情况。
本文从无线传输协议的制定、传输过程控制等几个方面对设计实现无线传感器网络进行了论述。在实际运用中,只要对具体的传感器进行更换,就可以适用于各种各样的传感器网络。由于无线传感器系统组网灵活,采用模块化的设计,故具有很好的移植性和扩展性,随着人们生活水平的提高,此系统在未来交通监控领域有着广阔的应用前景。在未来交通监控领域[10]、智能家电、家庭环境的智能调节上有着广阔的前景。
参考文献
[1]孙利民,李建中,陈渝,等.无线传感器网络[M].北京:清华大学出版社,2005:3216
[2]PatKinneyetal.,TemplateforIEEE802.15.4LR-WPAN,URL:http:///15/pub/TG4
[3]孙永进,孙雨耕,房朝晖.无线传感器网络的连通与覆盖[J].天津大学学报,2005,38(1):14217
[4]GJPottie,WJKaiser.Wirelessintegratednetworksensor[C].In:communicationsoftheACM,2000;43(5):51-5
[5]李建中,李金宝,石胜飞.传感器网络及其数据管理的概念、问题与进展.软件学报,2003,14(10):1717~1727
[6]任丰原,黄海宁,林闯.无线传感器网络[J].软件学报2003;14(7):1282-1291
[7]AlanMainwaring,JosephPolastre,RobertSzewczyk,DAVCullerandJohnAnderson.WirelessSensorNetworksforHabitMonitoring[C].In:FirstACMInternationalWorkshoponWirlessSensorNetworksandApplications,Atlanta,Georgia,USANewYork,NY,USA:ACMPress,2002:88~975
[8]YOUNISO,FAHMYS.HEED:ahybrid,energyefficiendistributedclusteringapproachforAdHocsensornetwork[J].IEEETransactionsonMobileComputing,2004,3(4)3662379
无线网络论文篇6
Wi-Fi技术是上世纪末由Wi-Fi联盟提出来的技术标准,属于在办公室和家庭中使用的短距离无线技术,主要应用于局域网中。除个别版本使用5GHz附近频段外,Wi-Fi技术主要使用2.4GHz或5GHz附近频段。当前应用的802.1la/b/g/n协议版本。Wi-Fi技术的定义其实只涉及数据链路层的MAC子层和物理层,上层协议和802.3的定义都遵守802.2。对于数据安全性,Wi-Fi技术中更多使用的是WEP或WPA加密方法来实现对网络访问的验证和数据的加密,而这两种加密方式都存在一定的安全风险,尤其是WEP协议。在WEP协议中,使用的RC4算法本身就有缺陷,同时协议没有密钥管理机制,缺少对数据包的身份认证。针对WEP的各种漏洞缺陷已经出现多种解密的工具,这些工具都能在拦截到足够多的数据信息的前提下,很快解析出WEP的用户密钥,信息量越大,解密速度越快。虽然WPA和WPA2的加密技术有很大的提高,但是仍有一定的安全风险。在WPA协议的4次握手包中包含和密码有联系的信息,可以依靠这个信息来进行字典攻击。在这里成功破解出信息,关键依赖良好的字典和运算速度。
2工业无线网络安全隐患
虽然Wi-Fi具有传输速度高、覆盖范围广、建设成本低、辐射更小等特点,但其本身在安全性方面存在缺陷,故采用Wi-Fi技术的工业无线网络也面临着不少安全威胁。
2.1容易被入侵
工业无线网络的无线信号是广播的状态,即在特定范围内的用户都可以发现Wi-Fi信号的存在,任何恶意的入侵者都可以通过无线设备和破解工具对侦测AP并对无线网络发起攻击。Wi-Fi在对网络访问的验证和数据传输方面也采用了加密方式,如WEP、WPA和WPA2协议等,但是入侵者仍然可以通过破解WEP/WPA/WPA2协议来入侵Wi-Fi网络,一些无线网络分析仪可以轻松破解Wi-Fi网络的认证密码,一些有目的的入侵者除了通过技术破解方式非法接入工业无线网络之外,还有可能利用社会工程学的入侵手段进行接入,如入侵者向合法用户套近乎或采取有偿的方式获得接入用户名和密码也能达到目的。
2.2有限带宽容易被恶意攻击占用和地址欺骗
入侵者在接入Wi-Fi网络后发送大量的ping流量,或者向无线AP发送大量的服务请求,无线AP的消息均由入侵者接收,而真正的移动节点却被拒绝服务,严重的可能会造成网络瘫痪;入侵者同时发送广播流量,就会同时阻塞多个AP;攻击者在与无线网络相同的无线信道内发送信号,而被攻击的网络就会通过CSMA/CA机制进行自动使用,这样同样会影响无线网络的传输;恶意传输或下载较大的数据文件也会产生很大的网络流量。这种情况在无线城区应用中较少见,入侵者恶意堵塞网络,极有可能是要故意破坏生产环境,造成一定的损失。在工业生产中可用性应该是第一位的,对工业网络安全来说,保证网络的可用性也是第一位的。所以这种威胁对工业无线网络来说威胁是比较大的。
2.3数据在传输的过程中很容易被截取
通过监听无线通信,入侵者可从中还原出一些敏感信息;当工业无线网络传输数据被截取后,入侵者甚至可能伪造某些指令给工业生产造成损失。
2.4伪造AP入侵者
可以自己购买AP并将AP的ID设置为正规的AP的SSID来欺骗用户接入并窃取敏感资料。这种危害主要是使新接入用户会误接入到伪造AP中,无法正常工作。
2.5高级入侵
只要是入侵者采用合法或者非法手段接入无线城区,他就可以以此作为入侵其它系统的跳板,采用黑客手段攻击其它系统或网络,而他的行踪则很难被追寻;或者通过劫持身份验证会话、伪造认证服务器及验证回复等步骤,攻击者不但能够获取无线账户及密码,遭遇到更深层面的欺诈等。
3结束语