北师大版八年级上册数学第一单元知识点()(4篇)
北师大版八年级上册数学第一单元知识点
1、勾股定理的内容:如果直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。
注:勾短的边、股较长的直角边、弦斜边。
勾股定理又叫毕达哥拉斯定理
2、勾股定理的逆定理:
如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
3、勾股数:
满足a2+b2=c2的三个正整数,称为勾股数。勾股数扩大相同倍数后,仍为勾股数。常用勾股数:3、4、5;5、12、13;7、24、25;8、15、17。
4、勾股定理常常用来算线段长度,对于初中阶段的线段的计算起到很大的作用
北师大版八年级上册数学第一单元知识点
全等三角形
1、全等符号:"≌"。如图,不是为:△ABC≌△A′B′C′。读作:三角形ABC全等于三角形A′B′C′。
2、全等三角形的.判定定理:
(1)有两边和它们的夹角对应相等的两三角形全等。(即SAS,"边角边");
(2)有两角和它们的夹边对应相等的两三角形全等。(即ASA,"角边角")
(3)有两角和其中一角的对边对应相等的两三角形全等。(即AAS,"角角边")
(4)有三边对应相等的两三角形全等。(即SSS,"边边边")
(5)有斜边和一条直角边对应相等的两直角三角形全等。(即HL,"斜边直角边")
3、全等三角形的性质:
(1)全等三角形的对应边相等、对应角相等;
(2)全等三角形的周长相等、面积相等;
(3)全等三角形对应边上的中线、高,对应角的平分线都相等。
4、全等三角形的作用:
(1)用于直接证明线段相等,角相等。
(2)用于证明直线的平行关系、垂直关系等。
(3)用于测量人不能的到达的路程的长短等。
(4)用于间接证明特殊的图形。(如证明等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形和梯形等)。
(5)用于解决有关等积等问题。
北师大版八年级上册数学第一单元知识点
一、全等形
1、定义:能够完全重合的两个图形叫做全等图形,简称全等形。
2、一个图形经过翻折、平移和旋转等变换后所得到的图形一定与原图形全等。反之,两个全等的图形经过上述变换后一定能够互相重合。
二、全等多边形
1、定义:
能够完全重合的多边形叫做全等多边形。互相重合的点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
2、性质:
(1)全等多边形的对应边相等,对应角相等。
(2)全等多边形的面积相等。
北师大版八年级上册数学第一单元知识点
分式
1、分式:一般地,用A、B表示两个整式,A÷B就可以表示为的形式,如果B中含有字母,式子叫做分式。
2、有理式:整式与分式统称有理式;
3、对于分式的两个重要判断:
(1)若分式的分母为零,则分式无意义,反之有意义;
(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义。
4、分式的基本性质与应用:
(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;
(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;
(3)繁分式化简时,采用分子分母同乘小分母的小公倍数的方法,比较简单。
5、分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解。
6、简分式:一个分式的分子与分母没有公因式,这个分式叫做简分式;注意:分式计算的后结果要求化为简分式。