欢迎您访问高中作文网,请分享给你的朋友!

当前位置 : 首页 > 范文大全 > 写作范文

《长方体的体积》教学设计(精选5篇)

来源:网友 时间:2023-07-15 手机浏览

《长方体的体积》教学设计 篇1

教学目标:

1、经历自主探索正方体体积公式以及将长方体、正方体的体积公式归纳为“底面积x高”的过程。

2、掌握正方体的体积计算公式,知道字母表达式,会计算长方体、正方体的体积;理解体积公式“底面积x高”的实际意义,会利用公式计算长方体、正方体的体积。

3、在把长方体体积计算迁移到正方体体积计算及公式归纳的过程中,感受数学思考的条理性和数学结论的确定性。

教学重点和难点:

长方体和正方体体积的计算方法,以及其体积公式的推导。

教学过程:

一、复习引入

(1)1号长方体,长4厘米,宽4厘米,高3厘米,它的体积是多少?

(2)2号长方体,长4厘米,宽4厘米,高4厘米,它的体积是多少?

二、学习新课

探究正方体体积公式:

问:通过计算2号长方体的体积你们发现了什么?

引导学生明确:

(1)这个长方体长、宽、高都相等,实际上它是一个正方体。

(2)正方体体积=棱长x棱长x棱长(板书)

(3)如果用V表示正方体体积,用a表示它的棱长字母公式为:V=a

教师提示:a也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的体积公式一般写成:V=a3(板书)

三、议一议

长方体和正方体的体积公式有什么相同点?

长方体和正方体底面的面积叫做底面积。

长方体(或正方体)的体积=底面积x高

如果用S表示底面积,上面的公式可以写成:

V=Sh

四、巩固练习

计算下面图形的体积

板书设计:

正方体体积=棱长x棱长x棱长 长方体(或正方体)的体积=底面积x高

V=a3 V=Sh

《长方体的体积》教学设计 篇2

教学目标:

1、在理解了长正方体体积公式,能运用公式进行计算的基础上,进一步研究求长正方体体积的其它计算公式。

2、进一步培养学生空间观念和空间想象能力。

教学重点:

1、计算长正方体体积的其它公式。

2、逆向思维的题可以用方程方法解。

教学难点:

几何知识与一般应用题的综合题。

教学过程:

一、复习检查:

如何计算长正方体的体积?及字母公式

长方体的体积=长x宽x高正方体体积=棱长x棱长x棱长

二、新授:

长方体或正方体底面的面积叫做底面积。

长方体和正方体的底面积怎样求呢?

长方体的体积=长x宽x高正方体体积=棱长x棱长x棱长

底面积底面积

所以长正方体的体积也可以这样来计算:长正方体的体积=底面积x高v=sh

三、巩固练习:

1、长方体的底面积是24平方厘米,高是5厘米。它的体积是多少?

v=sh24x5=120(立方厘米)

2、一根长方体木料,长5厘米,横截面的面积是0、06平方厘米。这根木料的体积是多少?

理解横截面积的含义,体会长方体不同放置,说法各不相同。

出示另一种计算方法:长方体体积=横截面积x长

3、家具厂订购500根方木,每根方木横截面的面积是24平方分米,长3米。这根木料一共是多少平方米?

理解面积单位和长度单位要一致。但不可能相同。

5、练一练:用方程法。

(1)、一块长方体的木板,体积是90立方分米。这块木板的长是60分米,宽是3分米。这块木板的厚度是多少分米?

(2)、一根长方体水泥柱,体积是1立方米,高是4米,它的底面积是多少?(选择方法解答)

1、学校要修长50米,宽42米,的长方形操场。先铺10厘米的三合土,再铺5厘米的煤渣。需要三合土和煤渣各多少立方米?

2、有一块棱长是10厘米的正方体钢坯,锻造成宽和高都是5厘米的长方体钢材,求长方体钢材的长。

3、用15根规格完全相同的木板堆成一个体积是3、6立方米的长方体。已知每根木板宽0、3米,厚0、2米,求每根木板的长。

四、小结:今天,我们又学了哪些知识?你有什么收获?

五、作业:

《长方体的体积》教学设计 篇3

各位领导,各位专家,各位同行:

今天,我说课的内容是长方体的体积计算。一堂有价值的数学课,给予学生的影响应该是多元而立体的。有知识的丰厚、技能的纯熟,更有方法的领悟、思想的启迪、精神的熏陶……然而,出于对知识和技能的盲目追逐,当今数学课堂忽视了本该拥有的文化气度和从容姿态,知识化、技巧化、功利化思想的不断弥散,让数学思想、方法、精神失却了可能生长的土壤,并逐渐为数学课堂所遗忘。这不能不说是我们数学教师的一种悲哀。作为对本原课堂的一种回归,如何挖掘知识背后隐藏的思想意义?如何让那些应该为学生所吸吮的思想与意义充分地涌流?本课希望作所尝试。下面我就从教材、学情、教法、教学流程和板书设计等方面谈谈我的构思。

一、说教材

面在体上,体由面生。长方体和正方体的学习是前面平面图形学习的延续,也是后续几何学习的基础。教材虽然在第一学段已经安排了生活中的立体图形,但这种安排更多的是缘于小学生空间观念形成的认识规律:客观世界最常见的是各种形状的物体,“面”是附着于体上的,在整体感知“体”的基础上,来研究“面”,有利于建立“形”的概念。安排“体”是为了更好地研究“面”。因此,本章实质是学生第一次真正研究立体图形、立体世界。本单元前几课时安排的是长方体和正方体的特征、性质,长方体、正方体的表面积的计算,体积的概念和常用的体积单位。应该说,这些内容的安排为长方体和正方体的体积计算作了很好的铺垫与孕伏,但这种铺垫与孕伏更多地表现为知识上的准备,而对于空间度量的一些核心思想,如怎样帮助学生完善空间观念?如何体会空间度量单位的实际意义?如何促使学生从一维到三维的发展?前面渗透不多,这都有待在本节课中进一步去挖掘。

二、说学情

学生生活在一个由形体组成的现实世界里,学生每天都在和图形接触,日常生活中积累下的对图形世界的感知、表象和思考构成了学生丰富的经验背景,成为他们认识“空间与图形”的重要物质基础。同时,学生在学前期时的一些操作性活动,比如摆积木、折纸等,由此积累下的丰富活动经验以及初步形成的空间观念也构成了他们学习本节数学内容的重要方法基础。

根据我对教材的理解和对学情的分析,我从课程标准的三个维度(知识与技能、过程与方法、情感、态度价值观)制定了如下教学目标:

(1)知识目标

1、理解、掌握长方体体积的计算方法。

2、领会长度单位、面积单位、体积单位的共同点,体会体积单位的实际意义。

(2)过程方法目标

1、猜想、验证、推导长方体体积计算公式,培养学生分析、归纳、推理以及抽象概括的能力。

2、进一步发展学生动手操作能力与空间想象能力。

(3)情感、态度、价值观目标

1、结合教学内容向学生渗透辨证唯物主义观点。

2、使学生感悟数学知识内在联系的逻辑之美。

并确定以下教学重、难点。

(1)教学重点:指导学生探究长方体的体积形成过程。

(2)教学难点:促使学生从一维到三维的发展,让学生深切感悟体积度量单位的实际意义。

三、说教法

为了高效地实现以上教学目标,分化教学重难点,提高课堂教学效率,在教学过程中,我采取了观察、操作、演示、自学讨论等方法有机融合的教学策略,引导学生在充分感知的基础上,通过拼一拼、摆一摆、想一想、量一量、比一比、看一看、说一说等活动 ,把学生的视觉、听觉、触觉、运动觉协同起来,由感知—到表象—再到本质,让学生在大量的实践活动中掌握知识、丰富表象、提升经验、形成思考。教学时,根据学生的年龄特点,也注重发挥多媒体教学媒体的优势,把静态的教学内容动态化,抽象的教学材料直观化,力图通过形象生动的教学手段吸引学生,调动每一位学生的学习兴趣,从而做到教法、学法的最优组合,促使每一位学生真正参与到探索新知的学习进程。

四.说教学过程

本节课我将分四个模块进行教学。

1.类比迁移,同化顺应

课一开始,我直接出示如下线段,并问:有几米?你是如何知道的?

显然,答案很简单:4米。因为用1米的米尺量了4次。

接着,我又出示一个长方形,问:“长方形的面积是多少?你又是如何知道的? ”

这也难不倒学生:12平方分米,因为用面积为1平方分米的正方形去度量,需要度量12次。

我出示长方体。长方体的体积是多少?要想知道长方体的体积,你有什么好建议?

由于有了前面两个内容的铺垫,相信学生会很自然地想到:用体积单位去度量。这样,不仅赋予了体积单位以实际的意义。同时,也水到渠成地引出“用正方体小方块拼摆长方体”的活动。最重要的是,上述教学将学生的视野从狭隘的知识授受中拉离出来,将长方体体积公式的学习提升到了“度量”的高度,进而,与线、面的度量统一到了一起,不仅顺利实现了学生的迁移,同时也有利于学生体会线、面、体的测量其实质是一样的,都是用相应计量单位去度量,有几个计量单位,其数量就是几。很明显,这不是一种知识,也不是一种技能,而是一种实实在在的思想方法。

这种思想方法有利于优化学生的知识结构!也有利于学生透过现象看到本质。事实上,学生对“度量”思想的高屋建瓴地理解确实对学习效果起到了提升了作用。这在下一模块的教学中体现得非常明显。

2、自主拼摆,提出猜想

怎样用体积单位去度量呢?教师让学生自主尝试。在学生尝试过程中,教师巡视,寻找典型摆法,然后组织学生交流。学生的典型摆法主要有以下三种:

第一种沿着长摆了4个,然后这样摆了2排,又接着摆了这样的3层,一共用了24个边长为1分米的小方块。这时长方体的体积很明显,用了24个边长为1的小正方体,所以长方体的体积就是24立方分米。

第二种进了一步,只“长摆了4个、摆了2排”,也就是只摆了1层,第2、第3层就没有严严实实地摆了,而是都用一个小方块代替。虽然只是一个小方块,但也可以看出摆的是3层。

至于第三种更抽象了。各位老师可以看,学生只沿着长、宽、高摆了一条。

显然,这三种摆法代表的是学生不同的思维水平:图(1)局限在直观操作水平;图(2)形象的、本质属性的成分虽然在增加——学生对高的意义已有所了解,但仍局促在形象抽象水平;而图(3)更进一步,是对长、宽、高意义的本质抽象概括的基础上的提升,已经达到了初步的本质抽象的水平。教师引导学生对这三种层次的交流过程,正是对长方体长、宽、高所代表的意义的逐渐明晰过程,是对“长方体含有多少个体积单位其体积就是几”这一知识点的孕伏铺垫过程,是对“长x宽x高”的内涵的逐次清晰过程,是学生头脑中的长方体“由直观—形象—抽象”的螺旋上升过程。而这一切,为学生直观感知、猜想长方体体积公式提供了表象支撑和智力支持。有了这个基础,学生很容易猜想出长方体的体积=长x宽x高。

3、实验验证,验证猜想

猜想的提出并不表示探究过程的结束,相反,它只意味着新一轮探究活动的开始。长方体的体积=长x宽x高,学生提出猜想后,我询问:“长方体的体积计算公式是不是就是‘长x宽x高’,同学们的猜想是否正确?怎样证明?”

学生纷纷回答:“长方体的体积是不是‘长x宽x高’,就要看它是否具有普遍意义?我们可以任意摆几个长方体,如果有并且只要有一个长方体的体积不等于‘长x宽x高’,那么就说明我们的猜想是错误的,反之,就说明我们的猜想是正确的。”

从学生的回答中,我们可以清晰地看出,这里学生感悟的不仅是知识,更是一种科学的研究方法。

在学生提出自己的实验构想后,教师顺水推舟,让学生自主摆长方体,并根据小组摆的情况,把小组内摆法不同的长方体相关数据填入下表。

长宽高小木块的数量长方体的体积

然后,组织学生交流,学生在交流中发现,虽然各组列举的长方体各不相同,但所有的长方体它的体积都满足“长x宽x高”。从而,同学们的猜想在最大范围内获得了普遍意义。

4、练习巩固、拓展延伸

由于时间关系,这里就不向各位老师展示了。下面是我这节课的板书设计。

谢谢各位老师!

板书设计

长宽高小木块

的数量长方体

的体积

2 d4d3 d2424d3

6d2d2d2424d3

3d4d1d1212d3

2d2d3d1212d3

长方体的体积=长x宽x高

V=a b h

读书破万卷下笔如有神,以上就是虎知道为大家整理的6篇《《长方体的体积》教学设计》,希望对您的写作有所帮助。

《长方体的体积》教学设计 篇4

教学过程:

一、复习旧知,引入新课

1、上节课我们已经学习了体积和体积单位,我们这节课继续研究体积。看看这个棱长1厘米的小正方体,体积是多少(棱长1厘米的小正方体,体积是1立方厘米)

2、对以前的知识掌握得很清楚,(添一个正方体)看看,这个长方体体积是多少

3、很聪明,知道2个1立方厘米的正方体体积是2立方厘米。(再添一个)这个长方体体积呢

4、也很棒,我这一堆正方体体积是多少怎么办(数数)数吧。太慢了,还可以怎么数(5个5个的数,10个10个的数,分组数)数吧

二、动手操作,展示交流

1、小结:刚才我们用数的方法知道了这一堆物体的体积是多少。如果把这些散乱的小正方体拼成一个长方体,还可以怎么数能不能计算出来呢试试吧!(巡视,提示用尺挡着摆,合作)

2、展示

(1)从同学们的表情和动作上,老师就看出来了,大家都完成了,哪个小组愿意到前面,展示一下你们的摆法,说说你们的算法

A,我看你俩操作能力挺强,你俩摆,你作个小解说员,告诉大家你们组是怎样摆的,大声点,让最后一排的听课老师也听清楚。其他同学可要仔细观察,看看他们摆的对不对,看看和你们摆的一样不一样。说不好,老师教他说(每排摆个,摆了排,摆了层)

B,你们怎么摆的我们已经看到了,现在请摆的同学说说是怎么算的追问:x算的是什么,再x呢

C,你们组说的很好,现在老师把你们的结果填在表里。每排个,排,层,体积是40立方厘米

3、展示

(2)和他们组摆法和做法一样的举手,凡是和他们摆的一样的,你们同样优秀。和他们组摆的不一样的举手,你们是不是也很优秀呢哪组愿意像他们一样到前面去摆一摆,说一说实践证明,你们组也很优秀!老师把你们的结果也填在表里。、40立方厘米

4、展示

(3)还有没有摆法你说说(只说不摆)表达很有条理,你们的数据是40立方厘米

5、展示

(4)还有摆法吗说说思路很清楚,我也记上、40立方厘米

6、展示

(5)说的很有层次40立方厘米

7、同学们想想,除了我们这5种摆法,还有其他摆法吗的确,还有很多种摆法。(……)

三、积极思考,总结公式

1、同学们观察你们摆的长方体,看看这组数据是长方体的什么(长)这组数据呢(宽)这组(高)

2、刚才我们计算出了这么多长方体的体积,你们能不能把刚才我们的算法整理成一个长方体体积公式呢(2、3个学生说说)

3、如果用V表示长方体体积,a表示长,b表示宽,h表示高,长方体体积公式可以写成什么

四、反馈练习,巩固提高

现在我们又掌握了一个数学工具,长方体体积公式,下边我们试试这个工具好用不好用。

1、看看,这是什么(砖)估计一下它的体积我们估计出了这么多结果,它的体积到底是多少呢谁读一读一块砖的体积是1728立方厘米,再估计,你们还会估计、吗同学们又进步了!

2、刚才我们紧张忙碌了半天,下面我们轻松一下,来一组口答(练一练1、2题,2题只列式不计算)

3、太容易了!看看这个,自己做在练习本上这个5表示什么这个5呢

4、小结:这节课我们把一堆1立方厘米的正方体转化成了长方体,并且找到了计算长方体体积的公式,其实这就是一种很重要的数学方法——转化。

老师给我们每个小组准备了一包沙子,你们能不能利用这节课的知识,求出沙子的体积在小组内说说想法。哪个组愿意说说办法动手试试吧!

《长方体的体积》教学设计 篇5

教学目标:

1.理解并掌握长方体和正方体体积的计算方法.

2.能运用长、正方体的体积计算解决一些简单的实际问题.

3.培养学生归纳推理,抽象概括的能力.

教学重点:长方体体积的计算方法.

教学难点:长方体体积公式的推导.

一、激趣导入

师:今天老师带了两个精美的礼品盒,喜欢吗?猜猜看,哪个礼品盒的体积大?

生1:我猜蓝色礼品盒的体积大,因为它比较宽;

生2:我猜黑色的礼品盒体积大,因为它比较长…

师:看来仅靠观察我们能准确比较出礼品盒体积的大小吗?(不能)。该怎么办呢?(计算)

师:这个主意不错!今天这节课我们就来研究长方体体积的计算。(板书课题)

二、先学后教

1、示自学指导(课件)

小组合作摆出不同的长方体并在记录单上做好记录,摆好后仔细观察,思考:长方体的体积与什么有关?想好后在组内交流。(时间4分钟)

2、学生按小组分工合作,二人拼摆长方体,一人记录,一人监督,探索长方体体积与什么有关?教师巡视指导。指两个小组到前面板演。

3、组织学生汇报。

生1:我们组摆了3个长方体,第一个长方体长4厘米,宽3厘米,高2厘米……我们组发现小木块的数量和长方体的体积相等。

师:能举例说明吗?

师:还有哪个小组愿意来回报你们的发现?

生2:我们组摆了3个长方体,第一个长方体长2厘米,宽3厘米,高3厘米,第2个长方体……我们组发现长乘宽乘高等于长方体的体积。例如第一个长方体的长2厘米,宽3厘米,高3厘米,用2x3x3=18,长方体的体积也是18立方厘米…、、)

师:真会思考,将你们组的发现写在黑板上。还有哪个小组愿意汇报?

其他组学生汇报。

4、验证发现

师:同学们都很善于观察思考,现在我们就重点看看第2小组的发现。他们组摆了3个长方体,发现长方体的体积=长x宽x高,那所有长方体的体积都等于长乘宽乘高吗?(师在黑板上写个“?”)现在我们就来验证一下。这次验证有两个要求:一、尽量用多的学具拼摆,二、把你们的发现用算式表示并填在记录表2中。

学生小组合作拼摆并进行记录,自由汇报拼摆结果。

生1:我们组摆了两个长方体,第一个长方体长6厘米,宽3厘米,高4厘米,体积是72立方厘米,用算式表示是6x3x4=72……我们组的结论是长方体的体积等于长x宽x高。

生2:我们组也摆了两个长方体,第一个长方体长……我们组的结论是长方体的体积=长x宽x高。

师:其他组你们的结论和他们一样吗?(一样)有了这么多例子,现在这个问号可以擦下去了吗?(可以)

(生齐读结论:长方体的体积=长x宽x高)

同桌互说,男女说,齐说。

师:如果用字母V表示体积,用a、b、h分别表示长方体的长、宽、高,那么长方体的体积公式还可以写成…(指说)

生:V=abh(开火车说)

5、小结

刚才,同学们通过观察、思考、验证得出了长方体的体积公式,真了不起。让我们把这一结论再次大声的读出来……

生:长方体的体积=长x宽x高V=abh

三、当堂训练

1、填空

2、一个长方体,长7cm,宽4cm,高3cm,它的体积是多少?

3、计算并比较两个礼品盒的体积。

4、计算下面立体图形的体积。(单位:分米)

(指生板演,汇报算法,在汇报过程中直接推导出正方体体积的计算公式及字母表示法)。

5、一块正方体石料,棱长是6dm,这块石料的体积是多少立方分米?

6、挖一个长和宽都是5米的长方体菜窖,要使菜窖的窖是50立方米,应挖多少米深?

7、一个正方体魔方的棱长总和是36厘米,它的体积是多少立方厘米?

8、计算组合图像的面积。

四、课堂总结

这节课你有什么收获?学生自由发言。

五、课外延伸

我国古代的数学家撰写了一本传世名著《九章算术》,其中对于有两个面是正方形的长方体,书中是这样叙述的:方自乘,以高乘之即积尺。就是说先用正方形的边长乘边长得底面积,再用底面积乘高得长方体的体积。看到这你想说些什么?

生自由发言。

六、随堂检测

1、建筑工地要挖一个长50米,宽30米,深5米的长方体土坑,挖出多少立方米的土?

2、一个棱长3厘米的正方体橡皮,它的体积是多少立方厘米?