激光加工范例(3篇)
激光加工范文篇1
关键词激光加工技术;钣金工艺;应用
中图分类号TG3文献标识码A文章编号1673-9671-(2012)051-0111-01
1激光与激光切割机
激光是相干光其中一种,具有最佳的单色性能、超高的亮度以及巨大的能量密度,同时具备良好的方向性。激光具有独特的特点,因而被广泛地应用于主要有激光打标、激光光谱、激光测距、激光雷达、激光切割、激光武器、激光唱片、激光指示器、激光矫视、激光美容、激光扫描、激光快速成型、激光成像等等,同时在这些领域上都有广大的应用空间以及发展潜力。激光加工技术在钣金加工工艺中具有很重要的位置,大大提高了钣金工艺的劳动生产率,推动了钣金工艺的发展。在钣金加工中,使用激光切割机可以大大地缩减加工的周期,提高加工精度,加快产品的开发速度,同时也降低了成本,这些优点被众多制造企业关注,且逐渐在钣金加工中采用激光切割机。在钣金加工中,激光切割机可以缩短加工周期、提高加工精度、省略更换冲压模具这一项环节进而可以对更多高度复杂的零件进行高精度加工,在钣金加工中被广泛的应用。
2激光切割的原理
其具体原理是:激光切割机把激光聚焦在需要加工的材料表面上的任意一点,激光的光能则在这一点上转换为热能,在非常短的时间之内,激光照射点的温度会急速升高,到达材料的熔点,之后升至其沸点,材料开始融化,然后气化,之后这一激光照射点就会变成一个小孔;这时候激光切割机已设定好移动的路径,激光束则在激光切割机的控制之下顺着设定路径开始移动,在这一过程中,被切割材料的表面会出现液化、气化的变化,并且激光束经过的路径会遗留下一道细长的缝隙。
3激光切割在薄板加工中的应用
3.1以软件优势来增强薄板材料的利用率
AMADA的激光切割机的编程软件是AM-LASER,其CAD工作平台采用的是CADKEY7.0,并且以Lnest以及旋转支撑等功能进行辅助。Lnest可以在定尺材料上对厚度相同的不同零件进行优化排列,利用此功能,激光切割薄板可以省去开料这一道工序,减少工时,同时也有效地降低材料装夹的次数。瑞士百超的激光切割机采用的是“飞行光路”这一较为先进的原理,需要加工的板材则不用夹紧,没有存在加工死区,同时加工的速度大大的提高;编制切割方案的时候,必须按照生产计划将料厚相同但类型不同的多排列在定尺材料之上,以此增强材料的利用率。
3.2有效减少模具的数量,提高产品开发的速度
近几年来,在纺织机械产品当中,少切削、无切削及钣金件占据的比重逐渐增大。然而,目前的市场竞争十分激烈,如何满足用户相对较小但是批量又很多的的品种尽快交换的要求,这是每一个企业所面临的很大难题。如果工艺设备过于落后,那么每一项钣金类零件在落料生产工序中则会花费大量的工作时间。绝大多数落料都要用到模具,而模具的设计以及生产都需要一定的时间;另外,新产品的出现都是要经过单件小批量地生产,而且零件还会依据试制情况的变化做出相应的改变与调整,如此,利用模具则大大增加了成本。而采用激光切割落料,无需利用到模具,节省大量的模具投入,加大缩短了生产的准备时间,加快了产品开发的速度。如今的市场瞬间万变,产品开发的速度越快就越能提前占领市场。激光切割冲压零件还可以确保模具设计的准确性。落料是拉伸成型的前道工序,其落料尺寸通常要进行修正。然而利用激光切割出的冲压零件在成形模上试加工,可以比较准确地制定出落料模的尺寸大小,为今后进行大批量生产做
基础。
3.3激光切割技术比传统加工技术更具成本优势
激光束都是以点的形式存在,因此在二维平面加工中具有很大的柔性化。激光切割机加工过程中,只有切割头进行移动,但工件则是静止,无需设置微连接,有助于激光在切割加工过程中比较简便。它的计算机CAM系统不需要进行单个零件的加工工艺的制作,仅仅需要把排样的结果以及切割的路线进行优化即可,然后启动激光发生就可以加工。但是,在复合机当中,则需要进行模具设置、激光切割路线的预设以及微连接部位的设定,之后才可以进行下一步的加工。由此对比,激光切割机与复合机比较,激光切割机的工艺工序准备工作时间大大的减少。在实际运用当中,复合机在加工的时候,由于夹钳拖动工件以及模具存在一些落料量,因此在原材料上则会出现加工死区,然而激光切割机进行切割时于工件静止,因而没有出现死区,从而提高了原材料的利用率,有效降低了单件工件所消耗的原材料成本。近几年来,激光切割的加工精度逐渐提高,很多工件不需要利用精加工工序也可以直接达到设计的相关要求,极大地简化一些加工工序,降低了单件的加工成本。同时,由于激光切割机切割速度的快速提高,极大地减少了工件的加工时间,同时操作人员的个人生产效率也得到很大的提高。
3.4激光切割所加工产品的精度进一步提高
由于激光切割加工速度不断提升,促使工件的加工热所影响的范围逐渐减小,整个工件在切割加工中所出现的热变形量也随之减小。同时,由于二氧化碳激光发生器的稳定性能逐渐提高,也促使激光切割面的光洁度随之增强。另外,工件静止的加工方式大大减少了振动。由于激光切割加工的精度水平的不断提高,使得激光切割加工的农机板金件也逐渐发生改变,由原来的低精度件逐渐转向高精度件发展。从生产实际情况来看,原先复合机APELIOⅡ357通常是加工材料厚度低于2mm的比较薄的零件,主要加工的是纺机的外包容件。而现在激光切割机既可以加工上述的零件,又可以加工材料厚度于3mm-4mm或者是大于6mm的中厚零件。这类零件大多数是结构件、传动件以及主要的工作件,
对于加工精度的要求比较高,其中,有一部分的零件已经接近精加工件的精度要求。采用激光切割的加工零件,不仅具备变形量小、加工面光洁度高的特点,同时还有工毛刺小甚至没有、零件的尺寸大小一致性好等特点,在农业机械的装配尺寸精度控制中具有重大的作用。
3.5增强产品的技术含量,提高企业的竞争力
激光切割可以加工一些通常方法都比较难加工的零件,例如染整机这一系列中绝大多数不锈钢箱体,它上面有很多不一样的孔,由于箱体比较大,以普通加工方法很难进行加工,然而激光切割完全可以满足这一类的要求,而且加工同一零件所用的时间很短,准确性极高。产品的技术含量也不断地提高,因此市场竞争力也随着增强。
4结束语
激光切割在生产制造中具有广阔的应用前景,是钣金加工工艺中另一种新的且实用的加工方法。从国外引进的激光切割机与AMADA比较具有独特的优势,主要有以下几点新的提高:①加工速度非常快速,成倍的提高,其综合效率明显提高,甚至高于数控冲床;②节省大量的材料。工件无需夹紧,也没有加工死区;③切割头更换十分简便快捷。不用任何工具,几秒之内即可进行更换,所有的管道以及电路都内置于切割头的后部;④软件操作界面非常好;⑤可以交换工作台系统。应用第二个工作台,切割过程中可以进行人工上料,可以人工卸料,生产效率提高50%;⑥能够高速地加工出尖角以及小圆角;通过光纤高速将数据传递,可以有效地实现切割速度于激光功率进行同步控制。
参考文献
[1]李钰,马继山.钣金件快速精确加工中的激光切割工艺分析[J].火箭推进,2009:66.
[2]王延,刘红,王东华.激光加工在钣金车间的应用分析[J].科技传播,2012,01:91.
激光加工范文
【关键词】激光切割;正交试验;表面质量
ResearchonSurfaceQualityofSolidLaserCutting?Processing
GOUGangLIUYongZHANGXue-juan
(schoolofMechanicalEngineering&Automation,XihuaUniversity,ChengduSichuan,610039,China)
【Abstract】Lasercuttingisplayinganimportantroleinthefieldofmachineryindustry,sheetmetal,hardwareandelectronicsindustries,etc.Throughtheanalysisoftheorthogonaltest,theauthordiscussedtheinfluenceofpulsewidth,dischargevoltage,pulsefrequencyandcuttingspeedonsurfacequalitywhentheotherconditionsareinvariable,andfoundtheprimaryandsecondaryfactorsandoptimalparametercombinationaffectingsurfacequality.Itishelpfultoseekbettertechnologyparameterforproductionandthetheoryresearch.
【Keywords】Lasercutting;Orthogonalexperiment;Surfacequality
激光加工是一门发展迅猛的特种加工技术,它具有高精度、高速度和高适应性的特点,同时还具有切缝窄、加工柔性好、热影响区小等优点。已经成为发展我国新兴产业,改进传统制造业的关键技术之一[1]。激光切割加工是一个相当复杂的热加工过程,影响因素非常多,而且各因素之间相互影响相互制约。如果加工时工艺参数选择不当,则加工质量必定会受到很大的影响。正确选择切割参数对于提高零件质量和生产效率以及减少加工成本具有重要意义[2]。目前切割参数主要集中在切割速度、激光功率和辅助气压上,一般情况下,激光功率和辅助气压都有相对稳定的参考值。本文主要探讨切割速度、脉冲宽度、脉冲频率和放电电压易调节工艺参数对切割质量的影响。通过正交试验,找出这几个参数的主次影响以及最优组合。
1试验设计和试验内容
1.1实验设备
实验采用武汉金运激光有限公司生产的KJG50330-500W-YAG金属切割机,主要技术参数如下:输入功率12.5KW;最大输出功率为500W;调制频率1~500Hz;光束脉宽0.5~20ms;激光波长1.064um。
1.2实验材料
实验选用Q235低碳钢板,加工试样厚度尺寸:δ=3mm,切割样件平面尺寸:40mm×15mm。
1.3正交试验设计
正交试验设计是研究多因素和多水平的一种设计方法,其根据正交性从全面的试验中选出具有代表性的点进行试验,这些点具备了“齐整可比,均匀分散”的特点,因此正交试验设计是一种高效率、快速、经济的实验设计方法[3]。如五邑大学的邓祥明曾使用改进的混合位级正交表L16(43×22)研究确定电火花线切割加工工艺参数[4]。本次采用正交试验,在其它条件一定的情况下,选择输入电压、脉冲宽度、脉冲频率和切割速度作为激光切割试验的因素。根据确定的4个因素和4个水平,采用L16(44),表头设计见表1。
表1正交试验表头设计
1.4激光切割试验结果
根据试验方案的设计随机安排顺序进行16次加工试验,部分试验结果如表2所示。
表2正交试验结果
2实验结果的极差分析
极差分析法又称为直观分析法,它具有直观形象、简单易懂、计算简单等优点,可以非常简单的观察分析出各试验因素水平变化对试验指标的影响大小、重要程度、变化范围,是正交试验结果分析最常用的方法[5]。根据极差分析方法,对正交试验数据进行极差分析如表3所示。
表3极差处理分析表
由极差分析表3可知,在本次实验的四个因素中,对表面质量影响最大的是切割速度,其次是脉冲宽度,影响最小的是放电电压。在加工中获得最小表面粗糙度的最优组合是A1B2C3D2。
3实验结果的方差分析
由于实验过程中往往存在误差,而极差分析虽然能直观形象地选择出最优参数组合,但不能区分出各因素水平不同而带来的系统误差和试验的随机误差。对于误差较大或者精度要求比较高的试验,只采用极差分析而不考虑试验误差的影响,就会给分析带来困难,甚至可能影响试验结论。采用方差分析可以更准确地分析出在各种因素作用下何种因素对试验指标影响较大[5]。对试验结果进行方差分析如表4所示。
表4方差分析表
通过方差分析表4可知,Fc大于F0.9(3,3)=5.39,FB、FD大于F0.95(3,3)=9.28,因此因子C在α=0.1的显著水平上显著,B、D在α=0.05的显著水平上显著,因子A不显著。即切割速度对表面质量的影响最大,其次是脉冲宽度,输入电压的影响最小。这和极差分析的结果一致。
4结语
在固体激光切割加工过程中,通过正交试验得到了不同加工参数(脉冲宽度、放电电压、脉冲频率和切割速度)对加工表面质量的影响规律,结果表明:
(1)本课题所选用的四个参数(脉冲宽度、放电电压、脉冲频率和切割速度)中,对激光切割质量影响最大的是切割速度,随着切割速度降低,切割表面粗糙度增加,速度过低时,因氧化反应热在切口前沿的作用时间延长,切口波浪形比较严重;随着切割速度的增加,工件表面的粗糙度有所提高,当达到一个最佳的切割速度时,此时切割表面的粗糙度最小。当切割速度增大到某一定值后则会出现无法切透板材的现象。
(2)脉冲宽度是激光能量作用的时间,在激光功率一定时,随着脉冲宽度的增加,一个脉冲激光能量就会增加,相应地对板材的烧蚀效果就越大,表面粗糙度会有所增加。试验表明,减小脉冲宽度,增加脉冲频率会使切口连续且平滑。
(3)激光功率、离焦量、辅助气压、板材厚度以及材料等因素对表面质量影响也很大,尤其是辅助气压和激光功率,本课题是在这些因素一定的情况下讨论加工中经常调节到的参数对割质量的影响情况,在以后的研究中,应该根据实际情况选择更多的参数和指标进一步深入研究。
【参考文献】
[1]孙晓东,王松,赵凯华,等.激光切割技术国内外研究现状[J].热加工工艺,2012,41(9):214-216.
[2]阎启,刘丰.工艺参数对激光切割工艺质量的影响[J].应用激光,2006,26(3):151-153.
[3]范彦宏,周玉成,李雅克.正交实验法在激光切割工艺参数选取中的应用[J].激光杂志,2008,29(5):83-84.
激光加工范文
【关键词】塑料;加工;激光;焊接
激光焊接技术是通过该运用激光束产生的热量熔化塑料接触面,最终把热塑性片材、薄膜和模塑零部件粘结在一起。塑料的激光焊接技术是在利用激光束与有机高分子物质的作用以此达到对塑料的焊接和处理等加工的目的。激光加工技术是一种包括光、机、电和材料等多门学科在内的综合技术。激光加工无需接触加工面便能进行焊接,不仅能完成各类形状复杂塑料的高精度焊接,不会存在刀具磨损和更换刀头等工序,速度快、噪声小,推广价值很大。将激光技术与计算机控制技术相结合,能更好的实现激光加工全自动化,其优势和应用价值相当大。
1.激光焊接技术的工作原理及其特点
塑料的激光焊接会在很大程度上与焊接材料相关。一般的激光焊接主要是通过激光透射焊接,一方面要求这个激光辐射能穿透零件,另一方面要求零件具有强列的吸收性能。在采用这种焊接技术的时候,要注意避免2个焊接件相互间的裂缝。在进行激光焊接时,吸收性的零件升温并且局部熔化,通过热传导将能量传递到透光的零件,通过外部的压力将2个零件紧密结合在一起。所吸收的近红外线激光转化为热能,将两个部件的接触表面熔化,最终形成焊接区。这种焊接方法能够形成超过原材料强度的焊接缝。
当前,我国市场上广泛运用的塑料焊接技术主要有振动摩擦焊接、热板式塑料焊接及超声波焊接等,主要是用在用于连接敏感性塑料制品、几何形状复杂的塑料件以及洁净度要求高的塑料制品上。
使用激光焊接技术来熔接塑料部件,具有很多其他传统方法不可比拟的优点:焊接缝尺寸精密、不透气及不漏水;激光焊接的接缝牢固且洁净,可以将很难连接的改性橡胶及玻纤填充的热塑性塑料进行焊接;能获得高精度的焊接件。在焊接的时候,树脂降解少,基本不会产生碎屑和飞边,部件表面能够精密连接;焊接设备不需要和被黏结的塑料零部件相接触,与其他熔接方法比较,大幅减少制品的振动应力和热应力;最小化热损坏和热变形,可以将不同组成或不同颜色的树脂黏结在一起;可焊接尺寸极小或外形结构复杂的零件,对有些复杂零件甚至可以进行“穿透焊接”;无振动技术能产生气密性的或者真空密封结构;能够将多种不同塑料焊接起来,而其他焊接方法有较大限制;设备自动化程度高,能方便用于复杂塑料零部件加工。非常适合运用在外形(甚至是三维)复杂塑料品的焊接上;能够焊接其他方法不易达到的区域。
因为激光焊接具有上述众多优点,因此尤其适合运用在对于清洁焊接方式要求高的焊接加工中,如可以运用在含线路板的塑料制品和医疗设备中。
2.塑料材料对激光焊接的适应性
激光焊接塑料材料必须对激光有吸收,否则就不能完成塑料的激光焊接。绝大多数本色的塑料和许多有色的半透明塑料都能采用激光焊接,例如聚苯乙烯(PS)、聚氯乙烯(PVC)和聚丙烯(PP)等材料。对于吸收率低的热塑性塑料,首先要选择合适的激光种类;二是在其中添加炭黑等激光增敏剂,能有效提高塑料对近红外激光的吸收率。通过对各种塑料材料对激光反射率和透过率的研究,可以解决激光焊接塑料的材料等问题。
激光焊接方式并不是适用于所有的材料,在以下材料中不适宜适用:高性能聚合物,如PPS,聚(PEEK)和LCP等材料中,因为这些材料对于近红外光的透射率很低,不适合适用激光焊接方式;如果两种材料中都有炭黑时,因为二者都为黑色,就不能焊接在一起。同时,两种对近红外线激光都透射的材料(通常是透明的或者白色的),因为会很少的吸收近红外光,不能使用激光焊接。而在很多工业塑料上,这些产品都要求透明。由于许多矿物填充的化合物能够吸收近红外线激光,所以通常不适合用激光焊接。高填充的玻纤增强物能够改变近红外线激光的透射率,降低焊接效率。不过原料供应商的配方中的玻纤含量通常不会超过这个限度。
3.激光焊接技术的运用
激光焊接技术起源于20世纪70年代,但是它的造价比较高,不能与更早的振动焊接技术、热板焊接技术相竞争。但是,在20世纪90年代中期,激光焊接技术所需要的设备费用大大降低,这种技术慢慢的真正走进工业应用当中,并被人们所认可。
塑料的激光焊接技术主要用于普通焊接技术难以适应的塑料制品(如高密度线路板)、形状复杂的塑料件以及有严格洁净要求的塑料制品(如医药设备、电子传感器等)等。激光便于计算机控制,采用光纤激光器输出激光束可使激光灵活地达到零件各个微小部位,能够焊接其他焊接方法不易达到的区域。传统焊接技术无法焊接的异型塑料也有机会加以良好焊接,如用激光可将能透过近红外激光的聚碳酸脂(PC)和30%玻纤增强的黑色聚对苯二甲酸丁二醇酯(PBT)焊接在一起,而其他的焊接方法根本不可能将2种在结构、软化点和增强材料等方面如此不同的聚合物连接起来。
激光焊接技术被广泛运用在被黏接的非常精密的塑料零部件材料(如电子元件)或要求无菌环境(如医疗器械和食品包装)中。激光焊接技术速度快,特别适用于汽车塑料零部件的流水线加工。另外,可以将激光焊接技术运用在那些很难使用其它焊接方法黏接的复杂的几何体中。目前国内使用的塑料焊接技术主要有热熔焊接、高频焊接、振动摩擦焊接及超声波焊接等。塑料的激光焊接技术在欧美发达国家已经得到了一定程度的应用。我国这方面的技术尚在起步阶段。
近年来,激光二极管广泛用于焊接及塑料的连接。激光焊接已用于制造汽车传感器、调速控制箱及薄壁医用管的精细焊接。激光焊接要求所焊接的2种塑料对同一波长的光有不同的反应,其中一种材料对激光必须具有穿透力,而另一种必须可被激光吸收,激光从上方接合处的穿透性元件传到下方可吸收元件,这样辐射能量就被转化成局域性的热能,此热能导致塑料的熔化。而透明塑料部位的熔化是通过与非透明材料的接触性热传导所致。在外部夹具的施压下,由局部加温而产生的焊接处热膨胀可形成牢固接缝。
4.激光焊接技术几种主要方法
根据激光器随塑料零件移动方式的不同,可把激光焊接技术(方法)分成四种类型:
4.1顺序型周线焊接
激光沿着塑料焊接层的轮廓线移动并使其熔化,将塑料层逐渐黏结在一起;或者将被夹层沿着固定的激光束移动达到焊接的目的。
4.2同步焊接
激光束经自适应光学系统或光纤,使光能均匀地分布在整个焊缝结构上。由于使用的装置很复杂,这种技术通常仅限于大批量焊接较大零件使用。
4.3准同步焊接
该技术综合了上述两种焊接技术。利用反射镜产生高速激光束(至少10m/s的速度),并沿着待焊接的部位移动,使得整个焊接处逐渐发热并熔合在一起。
4.4掩模焊接
激光束通过模板进行定位、熔化并黏结塑料,该模板只暴露出下面塑料层的一个很小、精确的焊接部位。使用这种技术可以实现小于10m的高精度焊接。
总之,激光技术发展到今天已经成为一门综合性科学,并可大大加快塑料产品研发的速度,使塑料生产企业获得更大的市场主动权。随着塑料工业的发展,激光技术的大规模应用无疑会给塑料工业带来革命性的影响,对于激光产品提供商来说,更是一种难得的机遇,也必然会推动激光技术的进一步发展。
【参考文献】
[1]庞振华,宋杰,杨绍奎,马跃新.激光塑料焊接技术及其典型应用[J].机电工程技术.2010(4):17-19.