欢迎您访问高中作文网,请分享给你的朋友!

当前位置 : 首页 > 范文大全 > 公文范文

生物燃料和生物质燃料的区别范例(12篇)

来源:其他 时间:2024-02-05 手机浏览

生物燃料和生物质燃料的区别范文篇1

一、生物液体燃料(生物燃油)是中国今后开发利用生物质能的一个主要方向1.1生物液体燃料产业的主要驱动因素是石油安全生物质能资源包括农作物秸秆和农业加工剩余物、薪材及林业加工剩余物、禽畜粪便、工业有机废水和废渣、城市生活垃圾和能源植物,可转换为多种终端能源如电力、气体燃料、固体燃料和液体燃料,其中受到最多关注的是生物质液体燃料(生物燃油)。世界不少国家已经开始发展生物燃油产业(包括生物燃油加工业以及其相关产业,如能源农业和能源林业),其中共同的目的在于保障石油安全。2011年中国石油净进口量为1.2亿吨,消费量为3.1亿吨,进口依存度达到了38.7%;国际能源署(IEA)预测中国到2010年、2022年石油进口依存度将达到61.0%和76.9%。石油进口量和进口依存度的迅速攀升给中国石油安全带来了日益严重的影响;中国的石油安全问题也引起了一些国家的顾虑。国产的石油和石油替代燃料能否“养活中国”呢?与资源有限的煤炭液化和国内油气资源开发等手段相比,资源可再生而且潜力巨大的生物燃油技术也受到了越来越多的关注。巴西生物燃油产业利用蔗糖发酵制取生物乙醇,2002年消费量达到了104亿公升,替代率接近40%。美国和欧盟国家在生物燃油产业方面也有丰富的经验。不过巴西的发展背景与中国更为接近。巴西生物燃油产业(以生物乙醇工程为开端,后来又发展了生物柴油)源于1975年,起因主要有二:一是出于国家能源安全和经济发展的考虑,在1973-1974年第一次石油危机中,由于巴西80%的燃料依赖进口,油价暴涨使巴西损失了40亿美元,经济也受到沉重打击;其次是为了促进国内种植业的发展和保护农民的利益,因为巴西是全球最大的甘蔗种植区。1.2发展生物燃油产业将带来显著的环境效益能源农林业的大规模发展可以有效地绿化荒山荒地、减轻土壤侵蚀和水土流失。大量使用生物燃油对中国大气环境的保护和改善也有着突出的意义:与化石燃料相比,生物燃油的使用很少产生NOx和SOx等大气污染物;由于生物质CO2的吸收和排放在自然界形成碳循环,其能源利用导致的CO2排放远低于常规能源。到2050年生物燃油开发量如果能达到1.05亿吨(这一数据是基于能源研究所2005年“中国能源中长期开发利用前景分析”研究项目的生物质能部分的情景分析;情景分析中能源林业以生产生物柴油原料为主,能源农业以生产生物乙醇原料为主;其中2022年、2030年、2050年预计开发量为:生物乙醇0.039、0.079、0.16亿吨,生物柴油0.15、0.33、0.89亿吨),则可绿化约3000万公顷荒山荒地,减排约3.1亿吨CO2。1.3发展生物燃油产业将为中国“三农”问题的解决做出相当的贡献建设从能源农林业到生物燃油加工业的生物燃油产业链可以成为中国解决“三农”问题的一个有力手段。1.3.1带动农业经济和林业经济2022年生物燃油开发量预计为1900万吨左右,初步估算可给国家和地方创产值1000亿元。到2050年生物燃油开发量如果能达到1.05亿吨,将创造5000亿元左右的年产值、吸纳1000万个以上的劳动力(主要是能源农林业接纳的就业),并为带动农村经济发展起到极大的作用;形成这部分生物燃油产能的初始投资(主要是产业建设投资,荒地改造和树种等费用相对较低)预计可以控制在1.0万亿元以内:年产值与产能投资的比值(大于1:2)大于某些常规能源产业的比值(例如,火电的年产值与产能投资的比值约为1:2.5)。1.3.2创造大量就业特别是农村地区的就业可以吸纳1000万个以上的劳动力,其中主要是农村劳动力,这有利于缓解农村大量劳动力闲置的局面。1.3.3为中国的城镇化建设提供有力支持一方面,中国的城镇化建设提高了人均能源需求量,特别是人均燃油需求量;另一方面,城镇化建设需要与之相伴的产业建设和就业机会的创造(一定程度上还需要增加在农村的就业机会以缓冲农村向城镇的移民浪潮):能源农林业(和生物燃油加工业)在这两方面都可以发挥重要作用。二、中国生物燃油发展现状与趋势2.1中国发展生物燃油产业已有一定的技术基础生物燃油产业的核心技术是生物燃油技术和能源作物的选育和种植技术。自“八五计划”期间已经开

生物燃料和生物质燃料的区别范文1篇2

1、物理变化是没有新物质生成的变化,一般指形状改变或三态转变考试用书

2、化学变化是有新物质生成的变化

3、物理变化和化学变化的本质区别是是否有新物质生成(判断依据)

4、微观上化学变化的实质是分子分成原子,原子重新组合,得到新分子,生成新物质

5、氧化物要满足两个条件:①两种元素②其中一种是氧元素

6、燃烧的三个条件是:①可燃物②有空气或氧气③温度达到着火点

7、可燃性气体+助燃性气体+点燃……可能会发生爆炸

8、提高燃烧效率的两种方法:

①有充足的空气②增大可燃物和空气的接触面积

9、燃烧、缓慢氧化、自燃的共同点有:

①都和氧气反应②都放出热量③都是氧化反应

10、特别的物理变化有:石油的分馏,干冰升华,矿石粉碎,潮解

11、特别的化学变化有:煤的干馏,物质变质,风化

12、特别的混合物:

溶液,合金,矿石,空气,煤、石油、天然气、水煤气都是混合物

13、六大营养物质:

生物燃料和生物质燃料的区别范文篇3

为落实我国2022年单位国内生产总值二氧化碳排放比2005年下降40%—45%的目标,“十二五”规划《纲要》明确提出“建立完善温室气体统计核算制度,逐步建立碳排放交易市场”。《“十二五”控制温室气体排放工作方案》(国发〔2011〕41号)也明确提出要加快构建国家、地方、企业三级温室气体排放核算工作体系,实行重点企业直接报送温室气体排放数据制度。

在国家发展改革委气候司组织和领导下,清华大学能源环境经济研究所在中国建筑材料科学研究总院和中国建材检验认证集团有限公司的协助下,借鉴了国内外有关企业温室气体核算报告研究成果和实践经验,参考政府间气候变化专门委员会(IPCC)有关国家温室气体清单编制和好的做法指南,以及国家发展改革委办公厅印发的《省级温室气体清单编制指南(试行)》,经过实地调研、深入研究和案例试算,研究完成了《水泥生产企业温室气体排放核算方法和报告格式指南》。研究过程中,国家发展改革委气候司多次组织行业协会和相关研究院所的专家,反复讨论修改,在保证科学合理的基础上,力求简明,突出可操作性。本文就该指南的核算方法要点和特色进行介绍和说明。

二、方法学的技术概要

(一)适用范围和核算边界

本方法适用于我国水泥生产企业温室气体排放量的核算和报告。核算边界是以水泥生产为主营业务的独立法人企业或视同法人单位从事生产活动的地理和物理边界。本方法所指温室气体排放仅指二氧化碳排放。

目前,我国水泥生产包括3个主要工序:原料和燃料制备、熟料制备和水泥制备。大多数水泥企业都带了余热发电装置,还有部分水泥企业开展了废弃物的处置工作,部分企业有矿山开采活动。为了方法适用的广泛性,本方法考虑了矿山开采、废弃物处置、余热发电和热力外供等部分。各企业排放核算包括哪些部分,应根据企业具体情况,说明清楚。没有的部分,可设置排放量为零。

(二)主要排放源

在水泥生产中,关键排放源包括:一是化石燃料的燃烧:水泥窑使用的实物煤、热处理设备和运输等设备使用的燃油等产生的排放。二是替代燃料和协同处置的废弃物中所含非生物质碳的燃烧:废轮胎、废油和塑料等替代燃料、污水污泥等废弃物里所含有的非生物质碳的燃烧产生的排放。三是原料碳酸盐分解:水泥生产过程中,原材料碳酸盐矿物分解产生二氧化碳排放,包括生料碳酸盐矿物分解产生的排放、窑炉排气筒(窑头)粉尘产生的排放和旁路放风粉尘中碳酸盐矿物部分分解产生的排放。目前我国水泥窑很少采用旁路放风技术,旁路放风粉尘中碳酸盐矿物部分分解产生的排放可设为零。四是生料中非燃料碳煅烧:生料中可能含有可燃碳,这些非燃料碳在生料高温煅烧过程中大部分转化为二氧化碳。五是生产过程外购电力:水泥生产需要从电网购买电力;同时生产过程有大量的余热,部分企业回收余热用于发电。发电上网的数量可用于抵消从电网购买的部分电量。六是生产过程中的外购热力:水泥生产过程中有外购的热力,也产生大量的余热,可外供给周围企业和居民,用于取暖、洗浴等,可减少取暖、洗浴等的化石燃料消耗。七是生物质碳的燃烧:水泥生产过程中,替代燃料和协同处置的废弃物中的非燃料碳可能含有生物质碳,生产过程中也可能用到生物质燃料。生物质碳燃烧产生的二氧化碳排放作为“备忘项目”报告,不计入企业总排放。

(三)核算方法

本方法将企业作为一个整体,按照以下步骤和计算公式核算企业温室气体排放量。

1、化石燃料燃烧排放

水泥生产中使用的化石燃料主要有实物煤、燃油等。燃烧产生的二氧化碳排放,按照公式(1)、(2)、(3)计算。

(1)

式中:Ecom为化石燃料燃烧产生的排放,单位:t;ADi为第i种化石燃料的数量,单位:TJ;EFi为第i种燃料的排放因子,单位:tCO2/TJ;i为燃料类型。

其中,

ADi=RLi×RZi(2)

式中RLi是核算和报告期第i种化石燃料的消耗量(t或万m3),根据企业生产活动的操作记录,同时相关的计量器具应符合《GB17167用能单位能源计量器具配备和管理通则》要求。

RZi是核算和报告期第i种化石燃料的平均低位发热量,推荐采用企业检测数据,也可使用缺省值。如采用实测,可由企业自行或委托有资质的专业机构进行检测,或采用与相关方结算凭证中提供的检测值。自行检测时,应遵循《GB/T213煤的发热量测定方法》、《GB/T384石油产品热值测定法》、《GB/T22723天然气能量的测定》等标准。

EFi=CCi×αi×ρ(3)

式中CCi为燃料i的单位热值含碳量(tC/TJ),推荐采用企业统计数据,也可使用缺省值;自行检测单位热值含碳量时,应遵循《GB/T476煤的元素分析方法》、《SH/T0656石油产品及剂中碳、氢、氧测定法》、《GB/T13610天然气的组成分析》等标准。

αi为燃料的碳氧化率(%);推荐采用企业统计数据,也可使用缺省值。

ρ为CO2与碳的分子量之比(44/12)。

2、替代燃料或废弃物中非生物质碳的燃烧排放

替代燃料或废弃物中,含有源于化石燃料的碳,燃烧产生的CO2排放量按公式(4)计算:

(4)

式中:EMnbf为替代燃料或废弃物燃烧中,源于化石燃料碳的CO2排放量,单位为吨(t);Qi表示各种替代燃料或废弃物的用量,单位为吨(t);HVi为各种替代燃料或废弃物的加权平均低位发热量,单位为兆焦每千克(MJ/kg),推荐采用企业统计和检测数据或缺省值;EFi为各种替代燃料或废弃物燃烧的CO2排放因子,单位为千克每兆焦(kg/MJ),推荐采用企业统计和检测数据或缺省值;αj为各种替代燃料或废弃物中源于化石燃料碳的含量(%),推荐采用企业统计和检测数据或缺省值;i表示不同种类的替代燃料或废弃物。

3、原料碳酸盐矿物分解产生的排放

原料碳酸盐矿物分解产生的CO2排放量,包括三部分:生料碳酸盐矿物分解产生的CO2排放量;窑炉排气筒(窑头)粉尘产生的CO2排放量;旁路放风粉尘碳酸盐矿物部分分解产生的CO2排放量。按公式(5)计算

EMd

(5)

式中:EMd为在统计期内,原料碳酸盐矿物分解产生的CO2排放量,单位为吨(t);Qi为生产的水泥熟料产量,单位为吨(t);Qckd为窑炉排气筒(窑头)粉尘的重量,单位为吨(t);Qbpd为窑炉旁路放风粉尘的重量,单位为吨(t);FR1为熟料中CaO的含量,%;FR10为熟料中非碳酸盐CaO的含量,(%);FR2为熟料中MgO的含量,(%);FR20为熟料中非碳酸盐MgO的含量,(%);44/56为CO2与CaO之间的分子量换算;44/40为CO2与MgO之间的分子量换算。i表示水泥熟料生产的不同批次。

4、生料中非燃料碳燃烧的排放

生料中非燃料碳燃烧产生的排放,可用公式(6)计算。

(6)

式中:EMmc为生料中非燃料碳燃烧产生的CO2排放量,单位为吨(t);Q为生料的数量,单位为吨(t);FR0为生料中非燃料碳含量,%;如缺少测定数据,可取缺省值为0.1%—0.3%(干基),生料采用煤矸石、高碳粉煤灰等配料时取高值,否则取低值;44/12为CO2与C之间的分子量换算。

5、外购电力的排放

水泥生产中,净外购电力产生CO2排放。所需的活动水平是统计期内企业计量的外购电量,减去企业余热回收发电的上网电量。电力消费的CO2排放因子数值由国家统一规定来确定。净外购电力导致的二氧化碳排放量,按公式(7)计算。

EMe=(ACe–ACp)×EFe(7)

式中:EMe为在统计期内,企业净外购电力产生的CO2排放量,单位为吨(t);Ace为企业外购电量,单位为兆瓦时(MWh)。ACp为企业余热回收发电上网的电量,单位为兆瓦时(MWh)。根据供应商和水泥生产企业存档的电力流入和流出记录获得,同时相关的计量器具应符合《GB17167用能单位能源计量器具配备和管理通则》要求。EFe是企业所在区域电力消费的CO2排放因子,单位为吨/兆瓦时(t/MWh)。企业应选用最近年份公布的区域电网平均排放因子。

6、外购热力的排放

水泥生产中,热力消耗产生CO2排放。所需的活动水平是统计期内企业计量的外购蒸汽和热力的数量,减去外供蒸汽和热力的数量。外购蒸汽和热力导致的二氧化碳排放量,按公式(8)计算。

EMh=(ACh-ACs)×EFh(8)

式中:EMh为在统计期内,企业外购蒸汽和热力产生的CO2排放量,单位为吨(t);ACh为企业外购的蒸汽和热力量,单位为吉焦(GJ)。ACs为企业外供的蒸汽和热力量,单位为吉焦(GJ)。根据供应商和水泥生产企业存档的热力流入和流出记录获得,同时相关的计量器具应符合《GB17167用能单位能源计量器具配备和管理通则》要求。EFh为企业外购/供的蒸汽和热力的排放因子,单位为吨/吉焦(t/GJ)。由国家统一规定确定,现可采用0.12t/GJ。

7、生物质碳的燃烧排放

替代燃料或废弃物中,含有源于生物质的碳。源于生物质碳的燃烧产生的CO2排放量按公式(9)计算:

(9)

式中:EMbf为在统计期内,替代燃料或废弃物中,源于生物质碳燃烧所产生的CO2排放量,单位为吨(t);Qi为各种替代燃料或废弃物的用量,单位为吨(t);HVi为各种替代燃料或废弃物的加权平均低位发热量,单位为兆焦每千克(MJ/kg),推荐采用企业统计和检测数据或缺省值;EFi为各种替代燃料或废弃物的燃烧CO2排放因子,单位为千克每兆焦(kg/MJ),推荐采用企业统计和检测数据或缺省值;βi为各种替代燃料或废弃物中源于生物质燃料碳的含量,(%),推荐采用企业统计和检测数据或缺省值;i表示不同种类的替代燃料或废弃物。

8、水泥生产企业温室气体总排放量

企业温室气体总排放量按公式(10)计算。

(10)

式中:EM为企业温室气体排放总量;EMi为企业核算边界内某排放类型的温室气体排放量;i为排放类型,包括燃料燃烧、工业生产过程、外购电力和热力等。

三、本核算方法的特点

(一)本方法具有中国特色

我国水泥生产企业数量和种类很多,在生产工艺流程、能源和原材料的使用等方面,差别较大。本方法综合考虑了不同区域的企业、企业产品级别的差别、生产规模的不同、生料中非燃料碳的含量、有无旁路放风、是否使用替代燃料、是否处理垃圾、是否有余热回收发电、是否有热力外供(企业外)、是否有矿山开采、是否外购熟料和磨细混合材、是否外购矿渣等不同的生产条件。

(二)核算边界与统计体系接轨

我国现行统计和计量制度采用的是企业级别的报告边界。本方法以企业为核算边界,符合我国目前的统计和计量水平,在数据获取方面不增加企业的负担,得到了业内企业和专家认同。

(三)量化方法与国际接轨

采用国际通用的活动数据法,即按照不同排放机理识别温室气体排放源,选择各类能源的消耗量、原材料消耗量或主要产品产量等作为分排放源的活动水平数据,排放量等于活动水平与排放因子的乘积。量化方法原理具有国际权威性。

(四)核算方法力求简明,突出可操作性

1、水泥生产企业窑燃烧温度很高,水泥窑中甲烷(CH4)的排放量相当少。甲烷排放以二氧化碳当量法计算通常是水泥窑二氧化碳排放量的0.01%﹝见IPCC(1996),表1-17﹞。同样,世界可持续发展工商理事会水泥可持续性倡议行动(CSI)工作小组编制的数据显示,水泥窑中一氧化二氮(N2O)的排放量相当少,在现阶段考虑到普遍结论的范围,这些数据很有限。因此,本方法只考虑二氧化碳排放。

2、在水泥生产过程中,生料碳酸盐矿物分解、窑炉排气筒(窑头)粉尘碳酸盐矿物分解、旁路放风粉尘碳酸盐矿物部分分解产生的CO2排放的排放因子是有差异的,但是我国只有极少数企业有旁路放风技术,因此本方法忽略这种差异,以求简明。

3、本方法只考虑外购电力和热力所产生的二氧化碳排放。对于有的水泥企业外购熟料、磨细的混合材料等中间投入,不考虑其在生产过程中所产生的二氧化碳排放。

4、本方法核算的排放,是企业生产的排放,不包括企业职工生活排放,如企业职工食堂、企业通勤车等方面的排放。

生物燃料和生物质燃料的区别范文1篇4

国内核燃料市场尚未完全放开

核燃料是核电站的“粮食”。由于铀矿属于国家战略性矿产,国内只有中核集团独立供给。除了少量的进口核燃料,中核集团是国内唯一拥有完整核燃料循环产业链的企业,持有从天然铀的开采到后端乏燃料处理的全部资质。

先后经历了核工业部核燃料局,中国核工业总公司核燃料局,中国核工业集团公司核燃料部,中国核工业集团公司核燃料事业部,直到2013年4月12日,中国核燃料有限公司正式成立,成为国内唯一核燃料生产商、供应商、服务商。

此前,中核集团董事长孙勤在接受《人民日报》记者采访时指出,中核集团核燃料循环后处理分三步走。第一步,2010年建成的我国第一座核电乏燃料后处理中间试验工厂,标志着我国全面掌握了乏燃料后处理技术,成为世界上少数掌握该项技术的国家之一。第二步,正准备在甘肃建设核燃料科技园。第三步,中法合作建设的800吨大型核循环项目计划于2022年开工,2030年左右建成,建成后我国将形成商用的大规模核循环能力,为我国核电可持续发展保驾护航。

中核集团旗下的中国核燃料有限公司的“十三五”规划中有这样的描述:到2022年,建立军民深度融合的核燃料产业体系,在满足国内核电发展需要的同时,实现在国际市场上规模化经营,到2022年末,占国际市场份额10%,到2030年占国际市场份额20%。

而作为中国最大核电运营商的中广核,在国内铀矿开采中只有探矿权,不具备开采权和生产核燃料资质。在核燃料领域,中核与中广核之间的“摩擦”和“角力”,几乎已是业内公开的秘密。

为打破发展桎梏,中广核选择从海外铀资源切入核燃料市场。2008年12月,中广核全资子公司中广核铀业公司获得了商务部“核燃料进出口专营资质”,为中广核实现燃料自主提供了可能。2009年3月,国务院国资委下发了调整中广核主业的通知,增加了“天然铀资源的勘查、境外天然铀资源的开发及相关的贸易与服务”。

近年来,中广核在海外积极开发铀矿资源,分别在哈萨克斯坦、乌兹别克斯坦、澳大利亚、加拿大等多国开展核燃料业务。“我们投资的纳米比亚湖山铀矿将于2016年下半年投产,产量非常大,年产八氧化三铀有望达到6500吨,将成为全球第二位的大型铀矿。”贺禹董事长对《中国经济周刊》记者表示。

核废料处理列入“十三五”百大工程项目

与人类任何活动一样,核电生产也会产生废料。法国电力公司(EDF)提供的数据显示,每台核电机组每年产生不到100立方米的中低放废料和短寿命废料。随着技术的改进和发展,废料的数量还在不断下降,最近10年每台核电机组的核废料数量已经减少了约一半。

核废料处置是核电产业链中的一个重要组成部分,是实现核能可持续发展必须解决的重要问题。

官方资料显示,国际上对核燃料后端处理(乏燃料后处理和最终处置)通常有两种策略:一种是将乏燃料(高放废物)暂时贮存后,经过整备后永久处置;另一种是对乏燃料进行后处理,回收其中的铀和钚,并制成MOX燃料提供给反应堆使用。各核电国家按照自身的条件选择处理策略,我国采取对乏燃料进行后处理,回收铀、钋并加以重复使用的“闭合循环”策略。

国家核安全局原局长赵成昆曾撰文指出,我国对核电厂放射性固体废物实行分类管理。根据放射性废物的特性及其对人体健康和环境的潜在危害程度,将核电厂的放射性废物分为高水平放射性废物、中水平放射性废物和低水平放射性废物。低、中水平放射性固体废物在符合国家规定的区域实行近地表或地下处置。高水平放射性固体废物实行集中的深地质处置。

核电厂运行产生的中低放固体废物,先在核电厂的固体废物暂存库贮存一定时间,然后送中低放固体废物处置场处置。我国已在甘肃和广东建造了两个低中放固体废物处置场。

“十三五”规划纲要明确,到2022年,国内“核电运行装机容量达到5800万千瓦,在建达到3000万千瓦以上,加强核燃料保障体系建设”。随着国内核电发展规模不断扩大以及未来核电出口数量逐渐增多,加强核燃料保障体系建设已经是大势所趋。

生物燃料和生物质燃料的区别范文篇5

依托国内可靠资源的供应体系,开发廉价、清洁的车用替代燃料,是确保我国的能源供应安全和环境清洁的根本途径。汽车的主要燃料是从石油中提炼出来的柴油和汽油。作为我国能源与环境研究中的重大和紧迫的课题,必须针对我国自然条件和能源资源特色,逐步改变汽车能源结构,发展清洁代用燃料,在发动机上实现高效、低污染的燃烧,控制汽车发动机有害排放对我国大气质量带来的日趋严重的影响。

首先看看国内外各种清洁代用燃料及其技术发展趋势。

1、液化石油气和天然气。压缩天然气(CNG)和液化石油气(LPG)由于具有的低污染物排放被认为是内燃机的较理想代用燃料,已经被成功地应用于汽油机。天然气的主要成份是甲烷(一般为83%~99%)及少量其他烃类、CO2等,具有较高的辛烷值,抗爆性能好,与汽油相比,燃烧更完全。天然气汽车可以降低40%的HC排放,50%的CO排放,采用缸内直喷和稀薄燃烧技术可进一步提高发动机效率,符合各国有关的环境排放标准。天然气因为其良好的排放特性及丰富的储量而成为各种代用燃料的首选。压缩天然气是目前车用天然气燃料的主要储存方式,在汽车上使用的主要缺点是储气瓶占用体积大。液化石油气作为车用燃料主要成份是丙烷、丁烷和少量烯烃和戊烷,储存方式是液态。其辛烷值较高,燃料费比酒精、汽油、柴油等便宜,CO、NOx等有害排放量低于汽油排放,基本上消除黑烟和颗粒物。

2、煤基液体燃料合成技术。通过煤液化合成油是实现替代燃料的现实途径之一,“煤变油”称为煤基液体燃料合成技术,分为直接和间接液化两种方式。直接液化是指在高温、高压条件下,加氢使煤中有机化学结构直接转化为液体燃料,再提质加工为汽油、柴油和航空燃料;间接液化是将煤汽化制成合成气,合成气再催化合成汽柴油。由于直接液化的操作条件苛刻,对煤炭的种类依赖性强,目前适合于工业化生产的“煤变油”都是间接液化的。具体方法是通过高温、高压的办法变成富含各烃类的气体,再把这些气体提纯并经过化学反应后生成油品和其他化工产品。资料显示,目前世界上可以通过“煤变油”技术合成高品质柴油的只有南非等少数国家,国内掌握间接液化合成油技术的只有中科院山西煤化所。“煤变油”重大科技项目成果表明,我国已具备了开发和提供先进成套产业化自主技术的能力,成为世界上少数几个拥有可以将煤变为高品质柴油全套技术的国家之一,初步形成了“煤变油”产业化的雏形。

3、氢气。氢气(H2)长期来主要用作宇宙飞行器发射和推进的燃料。作为汽车燃料,氢气辛烷值高,发动机热效率高,发动机可稳定燃烧,点火能量低,且火焰传播速度快,低温下易起动,其燃烧生成物主要是水和NOx,不产生HC、CO和碳烟排放。氢的主要缺点是储运性能很差,以液态方式储存时成本高,不适宜长期储存。从水制取氢有电解法、热化学法、光解法及微生物法,这些制氢方法的成本及能耗都较高、难以进行大规模制取氢燃料,因此必须在解决生产成本、储存运输等难题后,氢气才能走向实用。

4、醇类燃料。醇类燃料包括甲醇和乙醇。20世纪80年代一些国家发现醇类燃料不仅可以替代石油,且尾气排放物更低,激发了使用醇类燃料的热情。甲醇可从煤、天然气和油页岩制取。甲醇作为汽车燃料,具有辛烷值高、汽化潜热大、热值较低等特点。甲醇燃料自身含氧,在发动机燃烧中可提高氧燃比,CO和HC的排放较汽油和柴油低,几乎无碳烟排放;另外,由于汽化潜热高,可降低进气温度,提高充气效率,使最高燃烧温度低,发动机的NOx排放较低。乙醇可利用发酵的方法,从甘蔗、玉米、薯类等农作物及木质纤维素中提取,这些原料不仅储量大且是可再生能源。乙醇燃料以掺烧或纯烧方式已成功地用于汽油机上,在巴西、美国已应用许多年,技术上已十分成熟。乙醇在柴油机上应用,要对燃烧系统做较大改动。目前国外有关机构正在研制乙醇与柴油互溶的柴油醇,将具有很大潜力。存在的问题是乙醇制取能耗较大、成本较高,约为汽油的两倍,需在生产技术上寻求突破,降低能耗和成本。

5、二甲醚。二甲醚简称DME,是一种含氧燃料,它无毒性,常温时可在五个大气压下液化,具有与液化石油气相似的物性。二甲醚具有优良的压燃性,非常适合用作为柴油机的代用燃料。国内外相关研究表明燃用二甲醚燃料的发动机,在对原柴油机的燃油系统进行必要改造后,在保持原柴油机高热效率前提下,可使NOx有大幅度降低,碳烟排放为零,发动机燃烧噪声降低。使发动机有害排放达到世界上最严格的美国加州超低排放车标准。二甲醚燃料是实现柴油机汽车高效率、低噪声、超低排放的十分理想的洁净代用燃料。二甲醚燃料汽车技术已引起各国高度重视,纷纷开始研制开发。二甲醚燃料的制取可以煤、天然气、生物有机物等为原料产生合成气,先制得甲醇,进一步脱水制成二甲醚。

6、生物燃料。生物燃料是指从农作物或动物的脂肪中提取的可再生燃料。目前,已研制成功并投入使用的植物油型燃料有菜籽油、棉籽油、棕榈油、豆油、甲醇酯混合油等。将植物油和动物脂肪与酒精反应,脱去甘油三酸脂转变成甲酯或乙基酯之后就可以在柴油机上使用,这些酯类物被称“生物柴油”。生物柴油中的富氧可以加快燃烧速度,减少CO、HC和微粒排放。一般的酯化燃料十六烷值较高,燃料的性质与轻柴油接近,但发动机喷油系统金属会受到甲酯的腐蚀。生物燃料是一种可再生能源,特别在环境效益上,生物质生产过程中会吸收大气中的CO2,有助于减轻地球室温效应。

在能源资源上,我们的国情是“富煤、少气、缺油”,丰富的煤炭资源是可以依靠的主体能源。据世界能源理事会的预测,全球一次能源资源的可开采年限分别为:石油39年,天然气60年,煤211年。在世界已探明的储量中,中国石油占2.7%,天然气占0.9%,而煤炭却占15%。可见我国石油和天然气资源严重不足。中国国土资源部经过反复计算和论证,截至2002年年底,中国探明可直接利用的煤炭储量1886亿吨,人均探明煤炭储量145吨,按人均年消费煤炭1.45吨,即全国年产19亿吨煤炭计算,可以保证开采上百年,我国煤炭是中长期发展中可以依靠的能源资源。

相比较而言,我国天然气和石油液化气资源有限,不可能大规模作为车用燃料,而且需要建设新的储存、运输和分配系统,汽车也需要进行适当改造。氢气是洁净能源,将来可以作为燃料电池车的燃料。我国人口众多,可耕面积相对较少,植物油脂和可再生燃料如乙醇燃料不太可能大规模生产出廉价的代用燃料,但在某些区域可作为代用燃料。因此,利用我国相对丰富的煤炭资源,发展煤基替代燃料,即以煤炭转化为烃类或醇醚类清洁替代燃料,是解决我国日益增长的车用燃料消费的主要途径,是实现我国可持续发展战略的重要保障。

煤转化为车用替代燃料主要有两种途径:一是煤基液体燃料合成技术即“煤变油”技术;二是煤转化为醇醚燃料。

针对我国现状,通过煤液化合成油是实现我国油品基本自给的现实途径之一,走煤炭液化合成油的道路是解决能源危机最有效的可行途径。2001年科技部“863计划”和中国科学院联合启动了“煤变油”重大科技项目。中科院山西煤化所正在进行中试研究开发,取得了很大的进展。今后5到10年,我国将加快推进“煤变油”的产业化进程。要从战略高度而不仅仅是从经济利益角度看待“煤变油”。从煤炭价格、人工成本和使用国产化设备等因素考虑,中国“煤变油”技术每桶合成油产品的成本可以控制在20美元左右,低于欧佩克规定的每桶30美元的价格。“煤变油”产业化需要庞大的资金投入。从中试到产业化,必须经过万吨级示范项目的试验,建设一个万吨级示范厂,投资需要6-7亿元;而产生经济效益的百万吨级装置需要投资上百亿元;只有合成油总量达到1亿吨左右,才能说对国家能源安全有了积极影响。因此,必须理性对待煤变油。在我国,“煤变油”已经成为热潮,我们对此要少些盲目,多些理性,只有技术进一步创新,把成本降下来,才有能力做更多这样的项目;只有形成公司化、市场化运行机制,企业才能介入到技术开发当中,煤液化技术开发才能进入良性轨道。

煤基醇醚燃料是切实可行的代用燃料。煤基醇醚燃料是以煤为基础原料,将合成气在一定温度和压力下催化转化为甲醇、二甲醚等醇醚燃料。煤基醇醚燃料元素利用率高、技术成熟、工业运行经验丰富,含氧燃料环保性好,热效率高,适应性强,是解决目前我国能源安全问题的最有效途径。与煤液化合成油的工艺技术相比,醇醚燃料的合成技术更为成熟可靠。醇醚燃料具有原料消耗少,成本低,投资少,规模灵活,具有很强的经济实用性。经过多年的示范运行,我们对甲醇燃料的安全性、环保性、经济性有了深入的认识:

甲醇燃料的安全性好。甲醇有一定毒性,对人体健康有影响,总的看甲醇燃料要比汽油对人体健康危害小。甲醇燃料使用中有甲醇蒸气产生,低浓度的甲醇蒸气要比汽油蒸气的毒性小,高浓度时二者相当。甲醇属大宗化工产品,甲醇生产和应用企业很少出现甲醇中毒事故,通过掌握科学的操作和使用技术,不会对人体健康造成影响。山西省在甲醇车试运行中,连续数年委托有关医院对甲醇燃料车司乘人员、加注、储运甲醇的工作人员进行定期体检,未发现因甲醇引起的健康异常和职业病。

甲醇燃料环保性强。燃料甲醇是公认的清洁能源,辛烷值高,燃烧性能好。和汽油相比,甲醇是比较纯的化合物,不含硫、N及其他复杂有机化合物,含氧量高,燃烧充分,尾气排放中CO,CH,SO2,NOx和固体悬浮颗粒等污染物很少。尾气中有害物质碳氢化合物如苯、芳香烃等更少。山西省定期对参与示范的各种甲醇燃料车辆进行尾气测定,常规排放完全符合国家标准,达到并超过欧Ⅱ指标。甲醇车排放的甲醛量略大于经三元催化后的汽油车,现已研究出甲醇汽车尾气催化器,可将甲醛降低到汽油车相同水平。

甲醇燃料经济性高。经济性是燃料甲醇与甲醇汽车能否实现市场化的关键。实践证明,甲醇汽车(以中巴车为例)使用低比例M15、高比例M85、全甲醇M100每吨燃油费分别比同型号汽油车低194元、764元、900元。高比例多点电喷甲醇发动机比同型号规格的常规汽油机制造成本仅增加3000元,在用车改装全甲醇(M100)燃烧装置费用为4000元,但综合运营成本比普通汽油车低。目前销售一吨M15的93#甲醇汽油比销售一吨93#汽油给企业多带来效益121元,因此中石化、中石油两大系统参与甲醇汽油配销和推广的积极性很高。同时燃料甲醇的生产也具有很强的比较优势,高硫煤“多联供”制甲醇和焦炉气制甲醇成本在850元左右,最具实施的条件,最具广阔的市场前景,吸引了许多煤焦行业的民营资本进入,符合我国的国情和可持续发展战略。

生物燃料和生物质燃料的区别范文篇6

关键词:高压共轨柴油机;生物柴油(BTL);微粒(PM)排放;粒度分布

中图分类号:U473.1文献标文献标志码:A文献标DOI:10.3969/j.issn.2095-1469.2011.01.007

EffectofBiodieselBlendedFuelonParticulateMatterSizeDistributioninCommon-RailDieselEngineEmission

LaiChunjie1,SunWanchen1,LiGuoliang1,TanManzhi1,ChenShibao1,ZouMingsen2

(1.KeyLaboratoryofAutomobileDynamicSimulation,JilinUniversityState,Changchun,Jilin130025;

2.DepartmentofAutomobileEngineering,JiangsuTrafficTechnicianCollege,Zhenjiang,Jiangsu212006)

Abstract:Theeffectofbiomasstoliquids(BTL)biodieselblendedfuelwithdifferentcomponentproportionsontheparticulatematter(PM)emissionfromacommon-raildieselenginewasinvestigated.Moreover,thefeaturesofparticlesizedistributionwereanalyzedandtheeffectofBTLfuelfractionontheparticlesizedistributionwasobtained.Theresultsshowthattheparticlesizeismostlyunder300 nmandabimodaldistributionoftheparticlesizeisobserved.TheamountofsmallnuclearmodePMreaches60%.WithincreasingBTLfuelfractionthetotalnumberofPMgrows,theamountofaccumulationmodePMabove50 nmdecreasesandthepeakregionsappearatsmallerparticlesize.Forconventionaldieselfuel,theparticlesizeformsaunimodaldistribution,thepeakregionsarebetween50~100 nmandthePMaremostlyinaccumulationmode.Theengineloadalsohasagreatimpactonparticlesizedistribution.ThepercentageofnuclearmodePMdecreaseswiththeincreaseofengineload.

Keywords:common-raildieselengine;biodiesel;particulatematter(PM)emission;particlesizedistribution

柴油机PM排放成分极为复杂,含有多种致癌物质,对人类的健康和生存环境危害极大,如何降低柴油机的PM排放已经成为内燃机行业的一个关键性技术问题。高压共轨直喷技术(CRDI)最高喷射压力可达1.8×105 kPa,燃油雾化充分,PM的质量排放量得到控制,但PM值将趋于超细化。未来的排放法规不仅对PM的质量排放量进行了限制还对PM的粒数加以限制,因此柴油机PM排放的粒度分布日益受到国内外研究者的普遍关注[1]。

一般来说,根据PM粒径大小及生成机理将超细PM分为核态、积聚态两种。在PM成核阶段,以硫化物和燃烧过程中形成的固态碳粒为核心,挥发性有机物开始凝聚、吸附,形成粒径小于50 nm的核态PM;在PM凝聚阶段,挥发性有机物进一步凝聚、吸附,核态PM相互堆积形成粒径在50~1 000 nm的积聚态PM[2-4]。

PM粒度分布与燃料特性密切相关,不同理化特性的燃料将直接影响PM的粒度分布[5-8]。本文利用美国TSI公司的3090EEPSTM发动机排气粒径谱仪,对高压共轨、增压中冷柴油机稳态工况下PM粒度分布规律进行了试验研究,分析了不同BTL添加比例混合燃料对高压共轨柴油机稳态工况PM排放粒度分布的影响规律,并与石化柴油进行了对比,旨在为BTL的应用及其PM排放控制提供技术支持。

1试验设备及方法

1.1试验发动机

本研究采用高压共轨、增压中冷4缸直喷式车用柴油机进行,排放指标达到国Ⅲ水平,发动机的主要技术参数见表1。

1.2试验燃料

本研究使用的基础燃料为方圆样品油中心提供的标准欧IV0#低硫柴油,BTL是以菜籽油甲酯为主的调和产品。以0#柴油为基础,添加不同比例的BTL得到具有不同理化特性的燃料进行试验研究。本文将BTL添加体积分数为0%、10%、30%、60%和100%的混合燃料简称为B0、B10、B30、B60和B100。表2为试验燃料的主要理化特性指标。

1.3试验主要仪器设备

1.3.1发动机测试系统

试验测控系统由高压共轨柴油机、DS-9100燃烧分析仪、Horiba排气分析仪、AVL439消光烟度计、3090EEPSPM粒径谱仪等组成。图1为测试系统结构简图。PM粒度分布测量采用美国TSI公司生产的基于电迁移性测量技术的3090EEPSTM发动机排气粒径仪进行,粒径测量范围为5.6~560 nm。

1.3.2PM分布测试系统

为满足试验研究的需要,自行设计了排气PM二级稀释采样系统对发动机排气进行分流稀释,可满足粒度仪采样条件及测量要求。图2为PM粒度分布测试系统简图。第1级稀释管道中,通过调节阀门开度,控制排气量,将稀释比控制在20左右。第2级稀释采用全流稀释,通过调节二级管道的空气量控制第2级稀释比,试验中通过测量排气管及稀释风洞的CO2浓度确定风洞稀释比。经过试验测量,总稀释比控制在100以上均可满足粒度仪的测量要求。PM粒度分布及PM粒数均通过TSI 3090 EEPSTM排气粒径仪测量,并可实现风洞稀释比的同步测量。

1.4试验方案及试验方法

为揭示燃料特性本身对于发动机燃烧和排放的影响规律,试验中对于不同燃料的试验工况均采用等空燃比进行调整。发动机转速为1 600 r/min,空燃比分别为29、33、45.5、63和109,分别对应发动机75%、60%、40%、20%和10%负荷。为保证试验结果的准确性,更换不同燃料均在发动机运行半小时后进行试验,每次测量之前将排气引到稀释风洞中一段时间,保证稀释风洞达到饱和状态。

2试验结果及分析

2.1石化柴油、BTLPM粒度分布对比

图3和图4分别为发动机转速为1 600 r/min、不同负荷工况下欧IV石化柴油和纯BTLPM粒度分布对比。从图3中可知,对于石化柴油,PM粒数分布曲线呈单峰结构,峰值区域在0~100 nm之间,以积聚态PM为主,PM体积浓度、表面积浓度亦呈单峰分布,峰值区域在50~200 nm之间。与石化柴油相比,BTL燃料的PM粒径明显减小,粒数分布呈双峰结构,核态PM峰值区域在5~20 nm之间,积聚态PM峰值区域在30~100 nm之间,核态PM峰值远高于积聚态PM。PM体积浓度、表面积浓度分布呈单峰结构,峰值区域亦在50~200 nm之间。

造成两种燃料PM粒度分布规律存在明显差异的主要原因是:生物柴油具有较高的含氧量和十六烷值,正构烷烃较少,易于裂解生成较多的碳核及挥发性有机物,而来自燃料的未燃HC的挥发性较差更容易达到饱和状态并凝结成大量核态PM。较高的十六烷值导致燃烧的滞燃期缩短,预混合燃烧量减少,在前期燃烧过程中生成较多的核态PM。同时,较高的含氧量使缸内后期扩散燃烧过程得到改善,抑制了核态PM向积聚态的转化,因此BTL燃料的核态PM峰值远高于积聚态峰值。

对比不同负荷工况下PM粒度分布特征可以看出,对于石化柴油随负荷的增加PM数量浓度逐渐增加,超过60%负荷增加更加明显,并且小粒径的核态所占比例逐渐减小。主要原因是小负荷工况时,缸内燃烧条件不好,滞燃期长,空燃比过大,燃烧温度低,未燃HC增多,生成的核态PM不容易聚集,导致小负荷工况小粒径的核态PM增多。大负荷工况空燃比小,缸内易产生局部过浓区域,使PM生成迅速增多,峰值急剧上升,PM中可溶有机成分减少,以积聚态PM为主,PM体积浓度、表面积浓度分布曲线与粒数浓度分布曲线变化趋势基本一致。

对于生物柴油,核态PM粒数浓度峰值在中等负荷达到最大值,随负荷增加峰值急剧下降且逐渐向小粒径方向偏移;积聚态PM峰值随负荷增大而上升并逐渐向大粒径方向移动。原因是在小负荷工况下,缸内未燃HC较多,使核态PM难于凝聚为积聚态,因此10%负荷核态峰值较低、积聚态峰值较高。在20%~40%负荷区域内,缸内燃烧温度上升、空燃比下降,燃烧得到改善,未燃HC减少,核态PM向积聚态PM转变的趋势减小,因此核态PM峰值上升明显,同时,积聚态峰值稍有上升。在60%~75%大负荷区域内,空燃比进一步减小,缸内局部缺氧区域严重,燃烧温度上升,生成核态PM的数量增多并迅速积聚成积聚态PM[8-9],导致核态PM迅速减少,峰值区域向小粒径偏移,积聚态PM增加且峰值区域向大粒径偏移。

2.2不同添加比例BTL混合燃料PM粒度分布

图5为不同添加比例BTL混合燃料在不同负荷工况下PM粒度分布对比。可见在中、小负荷工况下,燃料PM粒度分布逐渐由石化柴油积聚态大粒径单峰结构向BTL燃料的双峰结构过渡;当BTL添加比例超过30%,核态PM数量增多,占PM总数的40%以上,50 nm以上的积聚态PM减少且峰值区域向小粒径方向偏移。与石化柴油相比,添加比例小于60%的混合燃料,PM总数略有下降。在大负荷工况下,不同添加比例的BTL混合燃料粒数浓度分布均为单峰结构,峰值区域在50~200 nm之间,以积聚态PM为主,PM总数下降。在所有工况下,PM体积浓度和表面积浓度分布均呈单峰结构,峰值区域在50~200 nm之间,添加比例超过60%后迅速下降。

研究发现PM粒度分布受燃料特性的影响较大。在小负荷工况下,BTL燃料粒数浓度分布呈双峰结构且核态峰值远高于积聚态峰值,石化柴油为积聚态单峰结构且峰值区域粒径较BTL大。因此,添加比例较小时,核态PM浓度和积聚态PM浓度变化不明显,添加比例超过60%,积聚态PM浓度明显减小且峰值区域向小粒径方向移动,核态PM浓度上升幅度较大。在大负荷工况下,BTL燃料的核态PM更多地向积聚态PM转变,核态PM浓度迅速降低,积聚态PM浓度上升,石化柴油积聚态PM浓度在大负荷工况下上升更为明显。因此,添加比较小时粒数排放粒度分布与石化柴油基本一致,添加比例超过60%后,BTL燃料的高含氧量使缸内燃烧得到改善,大粒径积聚态粒数浓度迅速下降。

3结论

(1)高压共轨柴油机PM排放粒径绝大部分在300 nm以下;BTL燃料PM排放粒度分布呈双峰结构,以小粒径核态PM为主,占PM总数的60%以上,峰值区域在5~20 nm之间,积聚态峰值区域在30~100 nm之间;石化柴油PM排放粒度分布呈单峰结构,以积聚态PM居多,占PM总数的55%左右,峰值区域在50~100 nm之间。

(2)不同负荷工况下的PM粒度分布规律有所不同,BTL燃料核态PM粒数浓度峰值在中等负荷达到最大值,随负荷增加峰值急剧下降且逐渐向小粒径方向偏移;积聚态PM粒数浓度峰值随负荷增大而上升并逐渐向大粒径方向移动。对于石化柴油随负荷的增加PM数量浓度逐渐增加,超过60%后其负荷增加更加明显且小粒径核态PM所占比例逐渐减小。

(3)对于BTL混合燃料,在中、小负荷工况下,随着BTL添加比例增加,燃料PM粒度分布逐渐由单峰结构向双峰结构过渡;核态PM数量增多,50 nm以上的积聚态PM减少且峰值区域向小粒径方向偏移。在大负荷工况下,各添加比燃料粒数浓度分布均为单峰结构,峰值区域在50~70 nm之间,以积聚态PM为主。

参考文献(References):

Themssionregulation(EC)No692/2008of18July2008[S].OfficialJournaloftheEuropeanUnion,2008.

KITTELSOND,ARNOLDM,WATTSW.ReviewofDieselParticulateMatterSamplingMethods[R].Minnesota:UniversityofMinnesota,1999.

刘双喜,宁智,付娟,等.柴油机排气微粒冷却演变特性的实验研究[J].环境科学,2007,28(6):1193-1197.

LiuShuangxi,NingZhi,FuJuan,etal.EvolutionCharacteristicsofDieselParticlesUnderCoolingCondition[J].EnvironmentalScience,2007,28(6):1193-1197.(inChinese)

LEEKO,ZhuJinyu,CIATTIS.Sizes,GraphiticStructuresandFractalGeometryofLight-DutyDieselEngineParticulates[C].SAEPaper,2003-01-3169.

LiXinling,HuangZhen,WangJiasong.ParticlesizedistributionfromaGTLengine[C].ScienceoftheTotalEnvironment,382(2007):295-303.

KITTELSONDB.EnginesandNano-particles:AReview[J].JournalofAerosolScience,1998,29(5/6):575-588.

王晓燕,李芳,葛蕴珊,等.甲醇柴油与生物柴油微粒排放粒径分布特性[J].农业机械学报,2009,40(8):7-12.

WangXiaoyan,LiFang,GeYunshan,etal.ParticleSizeDistributionofParticulateMatterEmissionfromtheDieselEngineBurningMethanol-dieselFuelandBiodiesel[J].TransactionsoftheChineseSocietyforAgriculturalMachinery,2009,40(8):7-12.(inChinese)

陈虎,陈文淼,王建昕,等.柴油机燃用乙醇-柴油含氧燃料时微粒特性的分析[J].内燃机学报,2005,23(4):307-312.

ChenHu,ChenWenmiao,WangJianxin,etal.StudyonPMEmissionCharacteristicsofDieselEngineFueledwithEthanolDieselBlend[J].TransactionsofCSICE,2005,23(4):307-312.(inChinese)

生物燃料和生物质燃料的区别范文篇7

中图分类号:TK223文献标识码:A

一、生物质能的特点与发展生物质能意义 

(一)生物质能的特点

1、可再生性 

生物质属可再生资源,生物质能由于通过植物的光合作用可以再生,与风能、太阳能等同属可再生能源,资源丰富,可保证能源的永续利用; 

2、低污染性 

生物质的硫含量、氮含量低、燃烧过程中生成的硫化物、氮氧化物较少;生物质作为燃料时,由于它在生长时需要的二氧化碳相当于它排放的二氧化碳的量,因而对大气的二氧化碳净排放量近似于零,可有效地减轻温室效应;

3、广泛分布性 

缺乏煤炭的地域,可充分利用生物质能。 

4、生物质燃料总量十分丰富 

根据生物学家估算,地球陆地每年生产1000~1250亿吨生物质;海洋每年生产500亿吨生物质。生物质能源的年生产量远远超过全世界总能源需求量,相当于目前世界总能耗的10倍。

(二)发展生物质能意义

生物质能源的开发利用早已引起世界各国政府和科学家的关注。国外生物质能研究开发工作主要集中于气化、液化、热解、固化和直接燃烧等方面。许多国家都制定了相应的开发研究计划,如日本的阳光计划、印度的绿色能源工程、美国的能源农场和巴西的酒精能源计划等发展计划。其它诸如加拿大、丹麦、荷兰、德国、法国、芬兰等国,多年来一直在进行各自的研究与开发,并形成了各具特色的生物质能源研究与开发体系,拥有各自的技术优势。 

我国生物质能研究开发工作,起步较晚。随着经济的发展,开始重视生物质能利用研究工作,从八十年代起,将生物质能研究开发列入国家攻关计划,并投入大量的财力和人力。已经建立起一支专业研究开发队伍,并取得了一批高水平的研究成果,初步形成了我国的生物质能产业。生物质能是一个重要的能源,预计到下世纪,世界能源消费的40%来自生物质能,我国农村能源的70%是生物质,我国有丰富的生物质能资源,仅农村秸杆每年总量达6亿多吨。随着经济的发展,人们生活水平的提高,环境保护意识的加强,对生物质能的合理、高效开发利用,必然愈来愈受到人们的重视。因此,科学地利用生物质能,加强其应用技术的研究,具有十分重要的意义。 

二、生物质能发电工艺 

生物质锅炉是将生物质直接作为燃料燃烧,将燃烧产生的能量用于发电。当今用于发电的生物质锅炉主要包括流化床生物质锅炉和层燃锅炉。

(一)流化床燃烧技术

流化床燃烧与普通燃烧最大的区别在于燃料颗粒燃烧时的状态,流化床颗粒是处于流态化的燃烧反应和热交换过程。生物质燃料水分比较高,采用流化床技术,有利于生物质的完全燃烧,提高锅炉热效率。生物质流化床可以采用砂子、燃煤炉渣等作为流化介质,形成蓄热量大、温度高的密相床层,为高水分、低热值的生物质提供优越的着火条件,依靠床层内剧烈的传热传质过程和燃料在床内较长的停留时间,使难以燃尽的生物质充分燃尽。另外,流化床锅炉能够维持在850℃稳定燃烧,可以有效遏制生物质燃料燃烧中的沾污与腐蚀等问题,且该温度范围燃烧NOx排放较低,具有显著的经济效益和环保效益。但是,流化床对入炉燃料颗粒尺寸要求严格,因此需对生物质进行筛选、干燥、粉碎等一系列预处理,使其尺寸、状况均一化,以保证生物质燃料的正常流化。对于类似稻壳、木屑等比重较小、结构松散、蓄热能力比较差的生物质,就必须不断地添加石英砂等以维持正常燃烧所需的蓄热床料,燃烧后产生的生物质飞灰较硬,容易磨损锅炉受热面。此外,在燃用生物质的流化床锅炉中发现严重的结块现象,其形成的主要原因是生物质本身含有的钾、钠等碱金属元素与床料(通常是石英砂)发生反应,形成K20·4Si02和Na20·2Si02的低温共熔混合物,其熔点分别为870℃和760℃,这种粘性的共晶体附着在砂子表面相互粘结,形成结块现象。为了维持一定的流化床床温,锅炉的耗电量较大,运行费用相对较高。

(二)层燃燃烧技术

层燃燃烧是常见的燃烧方式,通常在燃烧过程中,沿着炉排上床层的高度分成不同的燃烧阶段。层燃锅炉的炉排主要有往复炉排、水冷振动炉排及链条炉排等。采用层燃技术开发生物质能,锅炉结构简单、操作方便、投资与运行费用都相对较低。由于锅炉的炉排面积较大,炉排速度可以调整,并且炉膛容积有足够的悬浮空间,能延长生物质在炉内燃烧的停留时间,有利于生物质燃料的充分完全燃烧。但层燃锅炉的炉内温度很高,可以达到1000℃以上,灰熔点较低的生物质燃料很容易结渣。同时,在燃烧过程中需要补充大量的空气,对锅炉配风的要求比较高,难以保证生物质燃料的充分燃烧,从而影响锅炉的燃烧效率。

三、国内外生物质锅炉的开发及应用

生物质发电在发达国家己受到广泛重视,在奥地利、丹麦、芬兰、法国、挪威、瑞典等欧洲国家和北美,生物质能在总能源消耗中所占的比例增加相当迅速。

(一)国外生物质锅炉的开发及应用

生物质锅炉的技术研究工作最早在北欧一些国家得到重视,随焉在美国也开展了大量研究开发,近几年由于环境保护要求日益严格和能源短缺,我国生物质燃烧锅炉的研制工作也取得了进展。生物质

燃料锅炉国内外发展现状示于表1。

美国在20世纪30年代就开始研究压缩成型燃料技术及燃烧技术,并研制了螺旋压缩机及相应的燃烧设备;日本在20世纪30年代开始研究机械活塞式成型技术处理木材废弃物,1954年研制成棒状燃料成型机及相关的燃烧设备;70年代后期,西欧许多国家如芬兰、比利时、法国、德国、意大利等国家也开始重视压缩成型技术及燃烧技术的研究,各国先后有了各类成型机及配套的燃烧设备。

丹麦BWE公司秸杆直接燃烧技术的锅炉采用振动水冷炉排,自然循环的汽包锅炉,过热器分两级布置在烟道中,烟道尾部布置省煤器和空气预热器。位于加拿大威廉斯湖的生物质电厂以当地的废木料为燃料,锅炉采用设有BW“燃烧控制区”的双拱形设计和底特律炉排厂生产的DSH水冷振动炉排,使燃料燃烧完全,也有效地降低了烟气的颗粒物排放量。同时,还在炉膛顶部引入热空气,从而在燃烧物向上运动后被再次诱入浑浊状态,使固体颗粒充分燃烧,提高热效率,减少附带物及烟气排放量。流化床技术以德国KARLBAY公司的低倍率差速床循环流化床生物质燃烧锅炉为代表。该锅炉的特点主要体现在燃烧技术上。高低差速燃烧技术的要点是改变现有常规流化床单一流化床,而采用不同流化风速的多层床“差速流化床结构”。瑞典也有以树枝、树叶等作为大型流化床锅炉的燃料加以利用的实例。国内无锡锅炉厂、杭州锅炉厂、济南锅炉厂等都有燃用生物质的流化床锅炉。

(二)我国生物质锅炉的开发及应用

我国生物质成型燃料技术在20世纪80年代中期开始,目前生物质成型燃料的生产已达到了一定的工业化规模。成型燃料目前主要用于各种类型的家庭取暖炉(包括壁炉)、小型热水锅炉、热风炉,燃烧方式主要为固定炉排层燃炉。河南农业大学副研制出双层炉排生物质成型燃料锅炉,该燃烧设备采用双层炉排结构,双层炉排的上炉门常开,作为燃料与空气进口;中炉门于调整下炉排上燃料的燃烧和清除灰渣,仅在点火及清渣时打开;下炉门用于排灰及供给少量空气。上炉排以上的空间相当于风室,上下炉排之间的空间为炉膛,其后墙上设有烟气出口。这种燃烧方式,实现了生物质成型燃料的分步燃烧,缓解生物质燃烧速度,达到燃烧需氧与供氧的匹配,使生物质成型燃料稳定、持续、完全燃烧,起到了消烟除尘作用。20世纪80年代末,我国哈尔滨工业大学与长沙锅炉厂等锅炉制造企业合作,研制了多台生物质流化床锅炉,可燃烧甘蔗渣、稻壳、碎木屑等多种生物质燃料,锅炉出力充分,低负荷运行稳定,热效率高达80%以上。浙江大学等也开展了相关研究工作。下面介绍两种国产的代表性锅炉。

1、无锡华光锅炉股份有限公司

锅炉为单锅筒、集中下降管、自然循环、四回程布置燃秸秆炉。炉膛采用膜式水冷壁,炉底布置为水冷振动炉排。在冷却室和过热器室分别布置了高温过热器、中温过热器和低温过热器。尾部采用光管式省煤器及管式空气预热器。炉膛、冷却室和过热器室四周全为膜式水冷壁,为悬吊结构。锅筒中心线标高为32100m。锅炉按半露天。布置进行设计。

2、济南锅炉集团有限公司

济南锅炉集团有限公司在采用丹麦BWE技术生产生物质锅炉的同时,也开发出循环流化床生物质锅炉,其燃料主要为生物质颗粒。其燃料主要通过机械压缩成型,一般不需添加剂,其颗粒密度可达到1~017t/m3,这样就解决了生物质散料因密度低造成的燃料运输量大的问题。但颗粒燃料的生产电耗高,一般每生产1t颗粒燃料需耗电30~

55kW,因而成本较高,大约在300元/t。循环流化床锅炉炉内一般需添加粘土、石英沙等作为底料已辅助燃烧。由于燃料呈颗粒状,因而上料系统同输煤系统一致,很适于中小型燃煤热电厂的生物质改造工程,在国家关停中小型燃煤(油)火力热电政策和鼓励生物质能开发政策下有广阔的市场前景。

四、我国生物质直燃发电政策

我国具有丰富的新能源和可再生能源资源,近几年在生物质能开发利用方面取得了一些成绩。2005年2月28日通过了《可再生能源法》,其中明确指出“国家鼓励和支持可再生能源并网发电”,它的颁布和实施为我国可再生能源的发展提供了法律保证和发展根基。随后,与之配套的一系列法律、法规、政策等陆续出台,如《可再生能源发电有关管理规定》(发改能源[2006]13号)、《可再生能源发电价

格和费用分摊管理试行办法》(发改价格[2006]7号)、《可再生能源电价附加收入调配暂行办法》(发改价格[2007]44号)、《关于2006年度可再生能源电价补贴和配额交易方案的通知》(发改价格[2007]

2446号)、《关于2007年1—9月可再生能源电价附加补贴和配额交易方案的通知》(发改价格[2008]640号)等的。与此同时,国务院有关部门也相继了涉及生物质能的中长期发展规划,生物质能的政策框架和目标体系基本形成。2012年科技部日前就《生物质能源科技发展"十二五"重点专项规划》、《生物基材料产业科技发展"十二五"专项规划》、《生物种业科技发展"十二五"重点专项规划》、《农业生物药物产业科技发展"十二五"重点专项规划》等公开征求意见。表示将建立政府引导和大型生物质能源企业集团参与科技投入机制,推进后补助支持方式向生物质能源科技创新倾斜,形成政府引导下的多渠道投融资机制。这些政策的出台为生物质发电技术在我国的推广利用提供了有力的保障。

四、高效洁净生物质锅炉的开发应用建议

(一)重点开发适用于秸秆捆烧的燃烧设备

目前对生物质直接燃烧的研究,比较多地集中在生物质燃烧特性、燃烧方法和燃烧技术等方面,而对各种燃烧技术的经济性研究较少,更缺乏对不同燃烧方法、燃烧技术经济性的比较分析。实际上,由于生物质(尤其是农作物秸秆)原料来源地分散,收集、运输、贮存都需要一定的成本,有些燃烧技术需先对生物质燃料进行干燥、破碎等前期加工处理,真正适用的、值得推广的是能源化利用总成本最低、从收集到燃烧前期加工处理过程耗能最少、对环境影响最小的技术。例如,对于秸秆类生物质,捆烧将会是最有市场竞争力的燃烧方法,所以,应针对我国农村耕种集约化程度较低的现状,开发各种秸秆的小型打捆机械,并重点开发适用于秸秆捆烧的燃烧设备。农林加工剩余物(如甘蔗渣、稻壳、废木料等)则宜就地或就近燃烧利用,如剩余物数量较大且能常年保证供应,则可作为热能中心或热电联产锅炉燃料,热电联产的锅炉型式应优先采用循环流化床锅炉,数量较少或不能保证常年供应的,则可采用能与煤混烧的燃烧设备。

(二)加大科技支撑力度,加强产学研结合,突破关键技术和核心装备的制约

加大科技支撑力度,尽快将生物质能源的研究开发纳入重大专项,开发低成本非粮原料生产燃料乙醇和高效酶水解及高效发酵工艺,研究可适用不同原料、节能环保的具有自主知识产权的生物柴油绿色合成工艺,开发适宜中国不同区域特点的高效收集秸秆资源、发展成型燃料的关键生产技术与装备。

(三)做好技术方面控制

生物质锅炉的开发过程中应当克服以下技术问题:

1、粉尘控制与防火防爆 

目前生物质电厂的燃料储运是在常压下进行的,由于生物质燃料自身的特点,在其粉碎过程中或者在运输过程中出现落差的情况下,会产生大量的粉尘,导致了上料系统合锅炉给料系统的粉尘含量高,粉尘浓度甚至进入爆炸极限范围,存在极大的安全隐患。 

针对这种情况,需要我们根据国内燃料供应情况,在燃料粉碎、运输及上料环节上对生产工艺做相应修改,如采用封闭式负压储运;在落差较大的位置设置除尘装置;增设粉尘浓度传感器对粉尘进行实时监测;保持料仓的通风性良好,监测并控制料仓的温度、湿度。 

2、燃料输送系统的简化 

目前燃料输送系统和锅炉给料系统环节较多,工艺复杂,螺旋和斗式提升机经常堵塞的现象。燃料输送系统故障会导致炉前料仓断料,不能满足锅炉负荷下的燃料供应。 

为了避免这种现象发生,可以考虑改进现有的给料工艺,减少给料环节,不采用斗式提升机,改用栈桥、皮带,直接将料仓的料输送到炉前料仓。同时严格控制燃料湿度和粒度,防止燃料结团、缠绕,并改进自动化控制手段,保证输料系统连续稳定运行。 

3、结焦和腐蚀 

生物质燃料的成分和煤粉存在极大差异,尤其灰分中含有大量碱金属盐,这些成分导致其灰熔点较煤粉的灰熔点低,容易产生沾污结焦和腐蚀。因而生物质锅炉产生结焦、腐蚀的工况参数与普通燃煤炉不同,应该根据燃料性质及燃烧特性的不同,对锅炉及其辅助设备的工艺设计提出不同要求,并改进相关自动化控制使工艺运行环境符合现有设备要求。

随着国家大气污染排放标准的提高,因重视对废气排放的控制,炉内脱硫技术是控制空气污染的有效方法。循环流化床是我国燃煤发电重要的清洁煤技术。历经二十余年的发展,我国掌握了300MW亚临界循环流化床锅炉设计制造运行的系统技术,发展超临界参数循环流化床锅炉已经势在必行。国家发改委自主研发超临界600MWCFB锅炉是当前技术的典范。

参考文献

[1]刘强,段远源,宋鸿伟.生物质直燃有机朗肯循环热电联产系统的热力性能分析[j].中国电机工程学报,2013年26期.

生物燃料和生物质燃料的区别范文

航空喷气燃料应具有的性能

航空喷气燃料的主要功能是推进飞机前进,所以能量含量和燃烧性质是最核心的燃料性能。其它相关性能指标还有稳定性、性、流动性、汽化特性、抗腐蚀性、洁净性、材料相容性及安全特性等,飞机的安全和经济运行要求燃料在使用前足够清洁、无水和不含任何污染物。除了提供能量,燃料还作为发动机控制系统的压力液和特定燃料系统部件的冷却剂。航空喷气燃料性能能否达到使用要求,通过质量指标来控制与体现。表1列出了航空喷气燃料性能及与之相关的分析测试项目[4]。(1)热安定(稳定)性在飞机飞行中,航空喷气燃料还作为发动机和机体的热交换介质。工作环境温度较地面环境温度高,因此油品的热安定性是喷气燃料最重要的性质之一。在机体内,喷气燃料用来给发动机油、压力液和空调设备换热,燃料吸收的热量加速了生成胶质和颗粒物的化学反应。商用喷气燃料应在燃料温度高达163℃时保持热稳定,认为这样的燃料具备良好的储存安定性。(2)燃烧性通过把液体燃料注入快速流动的热空气流中,燃料在燃烧室中连续燃烧。在初始区域中,燃料在接近理想配比条件下汽化并燃烧,所产生的热气持续被过剩空气稀释,以便把温度降低到适合发动机安全运行的温度。通过目前规格中的试验方法测试与生烟相关的燃料的燃烧性质。通常,烷烃提供了最为理想的喷气燃料燃烧洁净性,环烷烃是次理想烃类,芳烃是飞机涡轮燃料燃烧性的最不理想烃类。在飞机涡轮中芳烃易于呈有烟的火焰燃烧,且比其它烃类释放出更大比例的不理想热辐射的化学能。萘或双环芳烃比单环芳烃产生更多的烟灰、烟尘和热辐射,是飞机喷气燃料使用的最不理想烃类。烟点提供了一个喷气燃料相对生烟性的指示,且与该燃料的烃类组成有关,无烟火焰的高度值大,表明芳烃含量低,燃烧的清洁性好。(3)燃料的计量和飞机航程当密度与诸如苯胺点或蒸馏等其它参数结合使用时,密度低预示单位体积热值低,预示给定体积燃料的航程降低。飞机和发动机的设计是建立在把热能转化为机械能的基础上。燃烧净热值提供了从给定燃料中获得的进行有效工作的能量数量,热值减少到该最小限值以下将伴随着燃料消耗增加和相应的航程减少。(4)燃料的雾化通过蒸馏测定在不同温度下燃料的挥发性和是否易于蒸发,规定10%蒸馏温度是为了确保易于启动,规定终馏点是为了排除难以蒸发的重馏分。燃料的黏度与其在整个温度范围的泵送能力和喷嘴雾化状态的一致性密切相关,燃料对泵的能力与黏度也有关系。(5)低温流动性冰点是燃料非常重要的性能,而且应足够低,以排除在高海拔处的普遍温度下燃料通过滤网向发动机流动时受到的干扰。飞机油箱中燃料的温度随着外界温度的降低而降低。飞行过程中燃料所经历的最低温度主要取决于外界空气温度、飞行时间和飞机速度。例如,长时间飞行要求燃料的冰点比短时间飞行的低。(6)与燃料系统和涡轮中的橡胶和金属的相容性已知硫醇硫可以与某些橡胶反应,规定硫醇含量限值以避免这类反应并减少令人不快的硫醇气味。对于喷气燃料控制硫含量很重要,因为在燃烧过程形成的硫氧化物会腐蚀涡轮的金属部件。喷气燃料铜片腐蚀试验合格的要求,确保了燃料中不含任何会腐蚀燃料系统各部分的铜或铜合金的物质。某些石油产品使用了矿物酸或苛性碱或两者进行处理,不希望有任何残留的矿物酸或苛性碱,也不希望含有杂质。当检验新生产的或未使用过的燃料时,测定酸值可以对此进行确认。(7)燃料的储存安定性实际胶质是燃料蒸发后所留下来的非挥发性残余物。如果存在大量的胶质,则表明燃料受到高沸点油品或颗粒物质的污染。(8)燃料的性飞机/发动机燃料系统的组件和燃料控制部件依靠燃料其滑动的部分。喷气燃料在此类设备中作为剂的作用称为燃料的性。喷气燃料性不好,可导致泵的流量下降或出现机械故障,严重时导致发动机空中停车。

航空生物燃料的特性与调合要求

从中长期全球航空工业技术经济角度分析,传统化石航空喷气燃料仍将占据航空燃料主导地位,这就要求替代燃料的性质必须与现有的传统燃料性质相近,可与其完全互溶、可以任何比例进行混合和共同运输。煤液化喷气燃料(CTL)、天然气合成喷气燃料(GTL)和航空生物燃料(Bio-SPK)这三种产品在能量密度、流动性等方面的性质与现有传统燃料基本相近,所以目前国际上航空替代燃料主要是这三种。与化石航空喷气燃料相比,航空生物燃料具有优异的热安定性、燃烧性和良好的材料相容性,除产品密度偏低外,其它性能指标均与化石航空喷气燃料要求一致。表2列出了航空生物燃料与化石航空喷气燃料性能指标的对比情况。由于航空生物燃料不含芳烃,实测的航空生物燃料净热值为44.14MJ/kg,烟点大于40mm;而化石航空喷气燃料的实测净热值为43.44MJ/kg,烟点实测为23mm(萘系烃含量为0.4%)。所以,航空生物燃料具有优异的燃烧性能和较高的热稳定性。但是,为确保避免长时间使用后飞机燃料系统橡胶密封圈收缩和相应的燃料泄漏,调合后的航空涡轮生物燃料规定了芳烃含量(体积)的下限不小于8%,上限不大于25%,而化石航空喷气燃料只规定了芳烃含量上限,因此其最低芳烃含量根据已有的经验来确定,实际指标目前仍在进一步研究之中。在燃料雾化(挥发性)方面,为保证涡轮燃料雾化性能和燃烧稳定性,航空涡轮生物燃料增加了蒸馏斜率T50-T10不小于15℃和T90-T10不小于40℃的要求。为满足航空涡轮生物燃料的蒸馏斜率要求,作为调合组分的航空生物燃料T90-T10要求不小于22℃。蒸馏斜率限制是根据目前对认可的合成燃料的经验确定的,目前正在进行蒸馏斜率实际需求的研究。另外,目前作为调合组分的航空生物燃料密度相对较低,15℃密度为730~770kg/m3,调合航空涡轮生物燃料选择时,需注意化石航空喷气燃料的实际密度值。化石航空喷气燃料的芳烃含量一般在10%~20%,密度(15℃)一般为780~820kg/m3。为了同时满足航空喷气燃料规格对芳烃最低含量8%和密度不低于775kg/m3(15℃)的要求,应选择芳烃含量大于16%、密度不低于805kg/m3(15℃)的化石航空喷气燃料调合航空涡轮生物燃料,航空生物燃料的含量不超过50%。

航空生物燃料标准

生物燃料和生物质燃料的区别范文篇9

关键词:循环流化床锅炉;超低排放;设计

中图分类号:TK229.6文献标志码:A

DesignandApplicationofUltralowEmission

CirculatingFluidizedBedBoilers

DUQinru

(TaiyuanBoilerGroupCo.,Ltd.,Taiyuan030008,China)

Abstract:Inordertomeettherequirementsofthepollutantsemissionintheboilerisland,thereductionoftheboilerislandsysteminvestmentandtheoperationcost,andtheimprovementoftheoperationreliabilityrate,theoptimizationdesignofcirculatingfluidizedbed(CFB)boilerbasedonfluidizationstatereconstructionwasconductedbythecontrolofthefurnacetemperature,thereductionofthebedmaterialsize,theoptimizationofthebedmaterialquality,theincreaseofthecirculationflowrate,theexpansionoftheoxygenpoorzone,theinhibitionoftheNOandSO2formation,theimprovementofthelocalCOconcentration,andtheincreaseofsulfurfixationratebyCaO.TheactualoperationresultsshowedthattheinitialemissionsofNOxandSOxinthefluegasofCFBboilerwaslessthanorclosetotheultralowemissionoftheboilerisland.

Keywords:circulatingfluidizedbedboiler;ultralowemission;design

随着国家对燃煤电厂、热源厂污染物排放要求的不断提高,超低排放已成为决定燃煤电厂、热源厂能否运行的关键指标。为此,全国成千上万燃煤电厂、热源厂投入大量资金加装除尘、脱硫、脱硝装置,对锅炉岛进行环保改造,这既增加了设备资金投入,又提高了锅炉岛运行、维护成本。如果燃煤锅炉初始烟气产生的污染物较少,甚至锅炉烟气初始排放就能达到超低排放要求,则燃煤电厂、热源厂投入的脱硫、脱硝、除尘设备就能大大减少,燃煤电厂、热源厂的经济效益就会明显提高。近年来,太原锅炉集团有限公司与清华大学合作,在流态重构节能型循环流化床锅炉的基础上,探索研制超低排放循环流化床锅炉。多台50MWe循环流化床锅炉的鉴定试验已取得阶段性成果。

1超低排放循环流化床锅炉

超低排放是指锅炉烟气中尘、二氧化硫、氮氧化物排放质量浓度[基准含氧量(体积分数)为6%]分别不超过10、35、50mg·Nm-3。目前燃煤电厂、热源厂在役的常规循环流化床锅炉烟气初始NOx的排放质量浓度一般大于300mg·Nm-3,有的甚至更高,极个别由于煤种因素可能低于200mg·Nm-3。不投入石灰石时,锅炉烟气中SOx初始排放质量浓度一般在1500mg·Nm-3以上,投入石灰石后一般在300~400mg·Nm-3。常规循环流化床锅炉烟气初始排放SOx和NOx质量浓度远远超过锅炉岛超低排放值,因此,大多数燃煤电厂、热源厂只能选择加装投资大、运行成本高的SCR脱硝和湿法脱硫设备。如果燃煤电厂、热源厂锅炉烟气初始排放值较低,能够实现低于或者接近超低排放值,则采用简单的炉内选择性非催化还原(SNCR)脱硝或热备、炉内石灰石+炉后半干法脱硫或热备,就可以满足超低排放要求,从而大大降低设备投资和运行成本。

能源研究与信息2018年第34卷

第1期杜琴如:超低排放循环流化床锅炉的设计及其应用

2超低排放循环流化床锅炉的设计基础

2.1煤的分析

锅炉烟气中的SO2和NOx是由煤燃烧生成的,因此,设计超低排放循环流化床锅炉首先必须对设计煤种特性进行分析。常規循环流化床锅炉设计时,锅炉制造厂需要用户提供设计煤种的化学元素分析结果和煤的粒径分布,其主要目的是进行锅炉热力计算、烟风阻力计算和结构布置等。

超低排放循环流化床锅炉设计时,除完成上述工作以外,对选定的设计煤种、设计石灰石也要进行取样试烧试验。试烧过程中,测定不同燃烧工况下烟气中SO2和NOx的含量、灰的成灰磨耗特性、石灰石烧结特性和脱硫活性等。将试烧试验结果作为循环流化床锅炉床温、还原气场及分离器优化设计的基础。

2.2NOx的生成

烟气中NOx主要包括NO、NO2和N2O。NOx的生成分为三种类型,即燃料型、温度型、快速温度型。循环流化床燃烧属于低温燃烧技术,燃烧温度一般控制在800~900℃之间,因此,循环流化床锅炉烟气中的NOx主要是燃料型,NOx中的N元素来自于煤,与空气中的N元素关系不大。循环流化床锅炉烟气中NOx主要成分是NO,占95%以上,另有少量的NO2和N2O[1]。

循环流化床燃烧也属于分段燃烧。燃料型NOx主要在煤的干馏燃烧过程中生成于流化床和密相区,因此,合理控制此区间的燃烧温度、氧量就能降低NOx的生成量。在一个足够大的流化床和密相区空间里,严格控制燃烧温度、氧量和燃烧物料的颗粒粒径,以便生成大量的CO,并将NO还原成N2。其化学反应过程为

C+O2=CO2

CO2+C=2CO

2NO+2CO=2CO2+N2

由于循环流化床燃烧属于分段燃烧,循环流化床锅炉炉内完全可以设计一个还原区,这样既可以抑制NO的生成,又可以还原NO,且对锅炉燃烧、传热基本没有影响,而其他燃烧方式目前还不具备此条件。因此,循环流化床锅炉具备实现NOx初始超低排放的先决条件。

2.3SOx的生成

煤中的硫除单质硫外,主要分有机硫和无机硫两部分。有机硫是指与C、H等结合生成的复杂化合物(CxHySz);无机硫主要是黄铁矿硫(FeS2)和硫酸盐硫(CaSO4等)。其中,黄铁矿硫和有机硫及单质硫是可燃硫,占煤中硫分的90%以上:硫酸盐硫是不可燃硫,占煤中硫分的5%~10%,是煤中灰分的组成成分。

煤在燃烧过程中,所有的可燃硫都会随着受热从煤中析出。在氧化性气氛中,可燃硫均会被氧化成SO2。循环流化床锅炉烟气排放的SOx中,一般SO2占98%左右,SO3只占0.5%~2%左右,相当于煤中1%~2%的硫分以SO3的形式析出[1]。

煤在循环流化床锅炉中燃烧,黄铁矿硫(FeS2)在300℃时即开始失去硫分,但其大量分解则发生在650℃以上。在氧化气氛中,FeS2直接生成SO2。有机硫在煤中是均匀分布的,一般在煤被加热至400℃时即开始大量分解析出,但对不同煤种稍有差异。有机硫经过燃烧分解析出,氧化后生成SO2。在循环流化床锅炉中,单质硫从流化床到密相区、稀相区、分离器、返料器都可能生成SO2。反应方程式为

S+O2=SO2。

2.4CaO的生成和脱硫

目前降低循环流化床锅炉烟气初始SO2排放最便捷方法是采用石灰石干法炉内脱硫,将CaCO3送入炉膛内煅烧,分解出的CaO与烟气中的SO2发生反应,生成CaSO4随炉渣排出。该过程主要分为两步:

(1)石灰石在流化床锅炉中煅烧,石灰石中的CaCO3煅烧分解为CaO析出CO2。反应方程式为

CaCO3=CaO+CO2

(2)煅烧生成的CaO表面呈多孔状,孔隙为硫的固化反应奠定了基础。硫的固化反应即CaO与SO2反应生成硫酸盐。其反应方程式为

CaO+SO2+1/2O2=CaSO4

影响循环流化床锅炉脱硫的主要因素为:

(1)床温

当床温低于800℃时,CaO孔隙减少,孔径小,反应速度低;当床温高于950℃时,CaO内部的孔隙结构会发生部分烧结,降低CaO与SO2的反应速度,导致脱硫效率降低。

(2)石灰石入炉粒径

石灰石入炉粒径分布对脱硫效率也有较大的影响。理论上,石灰石粒径越小炉内脱硫效果越好,因为减小石灰石粒径能增加其表面积,从而提高反应面积。如果石灰石粒径太小,分离器捕捉能力差,就会有很大一部分随烟气逃逸,从而不能随物料进行多次循环并与SO2长时间发生化学反应,反而增加尾部烟道的飞灰量。最佳的石灰石粒径分布与该锅炉分离器切割粒径有关,分离器对脱硫效率影响很大。

(3)石灰石品质

石灰石品质对脱硫效率影响十分敏感。不同品质的石灰石反应性能差异很大,在CaCO3含量、晶体结构和孔隙特征上也有所不同。一般应对石灰石做热重分析,测定其反应率指标,从而准确推算钙硫摩尔比。

3超低排放循环流化床锅炉工程设计

超低排放循环流化床锅炉是在节能型流态重构循环流化床锅炉的基础上延伸设计开发的。该锅炉采用单汽包、单炉膛、自然循环、全悬吊结构。锅炉主体结构由膜式水冷壁炉膛、两台高温绝热分离器和尾部对流豎井烟道组成。50MWe循环流化床锅炉基本结构如图1所示。炉膛内部布置水冷屏和过热屏,尾部竖井布置包墙过热器、对流过热器、省煤器和空气预热器。为了确保锅炉在流态重构后仍能满足传热要求,对超低排放循环流化床锅炉的燃烧热量分配和主要部件做了较大的改进。下面对主要部件改进原理和方向作简要描述。

图150MWe循环流化床锅炉基本结构

Fig.1Fundamentalstructureof50MWeCFBboiler

3.1流化床床温设计

流化床床温的合理确定是循环流化床锅炉能否实现超低排放的重要基础。在超低排放循环流化床锅炉设计中,首先依据煤种、循环物料流态、受热面结构等确定合理的流化床床温。该床温既要满足炉内石灰石的煅烧要求,又要抑制NO的生成。流化床床温与流化床面积、收缩率、炉膛受热面积、物料燃烧热量分配、循环物料质量、风的配比等因素有关,工程上一般控制在800~900℃,以控制在850~880℃为佳。目前在役的常规循环流化床锅炉床温一般在900℃以上。

3.2流化床和密相区还原气场设计

由于循环流化床锅炉烟气中NO形成主要集中在流化床和密相区,因此超低排放循环流化床锅炉必须在此相应设计一贫氧区,这样既抑制NO的生成,又可大量生成CO,使NO与CO发生化学反应,将NO还原成N2。炉膛内生成CO需要具备一定的燃烧温度、燃烧物料的表面积、含碳量和欠氧等条件。还原气场设计如图2所示。

3.2.1欠氧燃烧

循环流化床锅炉床上物料含碳丰富,气固混合强烈,温度较高,物料燃烧速度较快,如果此时减少氧气供给,物料燃烧后烟气中会生成大量CO。循环流化床锅炉床上氧气是由一次风提供的,减少一次风量就能减少供氧量。早期的循环流化床锅炉一次风占总风量的55%左右,超低排放循环流化床锅炉一次风量占总风量的40%~45%,降低了10%~15%。

3.2.2低料层阻力

增加有效物料床存量,提高物料床质量是还原气场设计的必要条件。提高物料床质量,燃料颗粒表面积增大,可提高燃料燃烧速度,有利于CO形成,同时可以保证循环流化床锅炉运行时物料携带量,保证传热的需要。降低料层阻力,虽然减小了一次风量,但仍可保证物料正常流化,可以降低一次风机耗电量。循环流化床锅炉要实现低料层阻力运行,分离器的分离效率是关键。

3.2.3提升二次风高度

循环流化床锅炉属于分段燃烧。为了确保物料燃尽、炉内传热,二次风以上炉膛部分氧量必须是过剩的。目前一般设计过剩空气系数为1.2~1.25。提升二次风高度,拉大二次风与布风板之间的距离,可为NO和CO发生充分的化学反应留出足够的时间与空间。

3.3分离器设计

分离器是超低排放循环流化床锅炉的一个关键部件。一般要求分离器对分离物料切割粒径d50在10μm以下,否則循环物料的床质量不能满足传热和循环燃烧需要。超低排放循环流化床锅炉必须对分离器进行优化设计。分离器的优化设计集中体现在分离器入口形状,流速,加速段、分离器直径,中心筒的形状与布置等。

4工程应用

基于前文提出的超低排放原理设计的50MWe超低排放循环流化床锅炉(锅炉1)于2015年4月在山西霍氏自备电厂投入运行。2016年8月国家特种设备检测研究院对该锅炉燃用不同煤种时的性能进行了鉴定试验。该锅炉设计参数见表1。鉴定试验煤种元素分析结果见表2,其中:Qnet为低位发热量;Mar、Vdaf、Aar分别为水分、挥发分、灰分质量分数;Car、Har、Oar、Nar、Sar分别为碳元素、氢元素、氧元素、氮元素、硫元素质量分数。

表1锅炉1设计参数

Tab.1Designparametersofboiler

燃用煤种1时,锅炉蒸发量为222~224t·h-1,床温为830~860℃[2]。投运石灰石后锅炉烟气中SO2和NOx的初始排放质量浓度分别为9.88、49.83mg·Nm-3,钙硫摩尔比为1.6[3]。燃用煤种2(贫煤)时,锅炉蒸发量为214~216t·h-1,床温为830~860℃[2]。此时,未投运石灰石情况下锅炉烟气中SO2和NOx的初始排放质量浓度分别为676.70、26.69mg·Nm-3[4]。

2016年10月国家特种设备检测研究院对2016年3月在山东临清三和纺织集团自备电厂投入运行的50MWe超低排放循环流化床锅炉(锅炉2)进行了鉴定试验。

试验时,锅炉蒸发量为222.85~223.5t·h-1,床温为830~860℃。投运石灰石后锅炉烟气中SO2和NOx的初始排放质量浓度分别为22.6、46.18mg·Nm-3,钙硫摩尔比为1.82[5]。

上述试验结果表明,基于超低排放原理设计的循环流化床锅炉燃用不同煤种并投运石灰石后,其烟气中SO2、NOx的初始排放质量浓度均低于35、50mg·Nm-3的超低排放要求。

5结语

生物燃料和生物质燃料的区别范文篇10

关键词:柴油机;含氧燃料;燃烧过程;排放

中图分类号:TK464文献标文献标识码:A文献标DOI:10.3969/j.issn.2095-1469.2013.01.06

随着我国经济迅猛发展和汽车保有量的高速增长,能源需求和环境保护问题的双重压力日益增加,因而迫切需要发展可以替代的燃料,其中含氧燃料的研究和应用是关键[1-4]。含氧燃料通常是指分子结构中含有氧元素的醇类、醚类、酯类等可以在内燃机中单独作为燃料或以添加剂的形式与汽油、柴油混合使用的含能物质。目前,在众多的柴油机代用燃料中,生物柴油、乙醇柴油等弱含氧燃料以良好的经济性、动力性和排放特性而大受欢迎,同时具有无需对发动机进行结构改造而能直接应用等优势,使其倍受各国青睐[5-6]。

针对醇类、醚类、酯类等含氧燃料各自与普通柴油在发动机上的比对应用,国内外做了大量研究工作,并已得到了各类燃料的燃烧与排放特性差异及机理性的解释,含羟基的燃料主要为短碳链物质,而酯类则以长碳链为代表。本文在同一台发动机上,进行发动机燃烧这些含氧燃料和普通柴油的燃烧分析和排放性能测试,研究低含氧量不同含氧属性(羟基和酯基)带来的发动机性能差异,协调这类弱含氧燃料在发动机上的运用。

1试验装置及方法

在不改变柴油机结构形式和供油提前角,仅微调供油量实现原机功率的基础上,进行柴油机分别燃用生物柴油、乙醇柴油、微乳化生物柴油和普通柴油4种燃料的燃烧过程和排放特性试验研究,分析含氧燃料在发动机上的应用特点。

试验样机为YZ4DB3,主要技术参数以及试验设备见表1和表2。试验测量了柴油机在标定转速不同负荷工况下燃用4种燃料时的缸内燃烧压力、燃油经济性和排放特性。

试验的基础燃料是0#柴油。生物柴油(Biodiesel)是由餐饮废油经酯交换工艺制备而成的。微乳化生物柴油(MicroEmulsion-Biodiesel,MB)按照柴油表面活性剂水的质量比为15∶2∶1配制而成。乙醇柴油(E20)是以正丁醇为助溶剂(体积比5%),柴油中掺混20%(体积比)乙醇的调合燃料。试验用柴油与各含氧燃料的理化特性见表3。

2燃烧过程分析

图1为在n=2900r/min,pme=0.77MPa工况下,发动机燃用4种燃料的缸内压力示功图、瞬时放热率和缸内温度等曲线图。从图1(a)可以看出,与燃用柴油相比,3种含氧燃料中生物柴油的缸内最大爆发压力略低,而MB和E20两者的缸内最大爆发压力均大于柴油。从图1(b)瞬时放热率曲线可以看出,与燃用柴油相比,长链的酯基燃料――生物柴油较高的十六烷值使着火时刻提前约2°CA,滞燃期内形成的可燃混合气量较少,且酯类燃料较高的粘度限制了缸内混合气的形成速度,后续燃烧延缓,放热率峰值略有降低。

发动机燃用E20和MB时,两者的放热时刻明显较柴油和生物柴油滞后,但两者的放热率峰值和最大爆发压力都比柴油高。出现这种现象的主要原因在于短链醇和水的加入使燃料的十六烷值降低,着火延迟期相对延长;低沸点的乙醇以及微乳化的水这两者微爆引起二次雾化现象[7-8],使滞燃期内燃料和空气混合比较充分;此外乙醇和微乳化油都是含氧燃料,氧的助燃作用又促使混合气燃烧速度加快,燃烧放热过程更加集中。良好的雾化性能又加速了扩散燃烧的进度,使燃烧终点提前,故而E20和MB的燃烧持续期缩短。

从燃料化学的角度,燃料中氧或者水只对燃烧过程起到调节作用,并不能增加燃料氧化释放出来的热量。因此,随燃料进入整个燃烧反应系统的氧或者水,随着反应容器内温度的升高,吸收一部分热量使其内能提高,因而3种含氧燃料的缸内工质平均温度都比柴油有不同程度的降低,如图1(c)所示。与燃用柴油相比,生物柴油尽管在进入气缸后最先着火,但在初期放热结束之后因其粘度较高,油气混合的速度比柴油燃料低,因此燃烧放热速度下降,缸内燃烧温度降低。MB因燃料中含有水,其缸内温度比生物柴油略有降低。而E20因汽化吸热和低热值等因素,其缸内温度最低。

图2为发动机在n=2900r/min转速下各个负荷工况下(各个目标工况一致)有效热效率的对比。从图中可看出,3种含氧燃料的有效热效率都比柴油高。在n=2900r/min、pme=0.77MPa工况下,发动机燃用生物柴油、MB和E20的有效热效率分别比柴油高出4.1%、8.7%和15.7%。生物柴油中氧的存在提高了混合气中的氧气氛,致使燃烧过程进行完全。而柴油中乙醇以及微乳化油中水的加入,与前文图1(b)中瞬时放热率解释一致,较长的着火延迟期、沸腾汽化带来的良好雾化性能和燃料自供氧的助燃作用,在这三者的综合效应下,使缸内燃烧放热过程相对集中、等容度高,热量转换为功的效率高。因此,MB和E20的热效率进一步上升。酯基或羟基物质用作燃油后,发动机有效热效率有不同程度的提高,燃料放热节奏的改变是主因,而含氧属性只能是其中辅助的因素。

3排放特性分析

3.1NOx排放

由ZeldovichNO形成的热力学机理可知,影响NOx生成的最主要的因素有3个:(1)温度。(2)过量空气系数(φa大,则造成富氧环境,有利于NOx生成)。

(3)反应在高温中的停留时间。图3是在标定转速下发动机燃用不同含氧燃料的NOx排放。在中低负荷工况下,生物柴油、E20以及MB对发动机NOx排放影响不大,而在高负荷工况下,较高的燃烧温度对NOx的生成影响起着决定的作用,各含氧燃料的NOx排放有一定程度的上升。在最大负荷工况点,发动机燃用生物柴油和MB时的NOx排放分别增加了11.1%和9.3%,这主要是由于缸内可燃混合气中参与化学反应的活性氧量上升,更易形成NOx排放。而发动机燃用E20时的NOx排放相对增加量较少,为7.2%。从缸内工质的平均温度图1(c)可以看出,由于乙醇汽化吸收热量且高含氧低热值乙醇进入气缸使燃料质量增多,发动机燃用E20时缸内温度最低,因而其NOx排放在这3个含氧燃料中最低。由此可见,在较高的缸内温度下,由酯基或羟基提供的更多的氧成为NOx快速增长的主要要素。

3.2CO排放

在标定转速下,发动机燃用4种燃料的CO排放如图4所示。CO是燃料不完全燃烧的产物,主要受燃烧温度和氧浓度大小的影响。在各负荷工况下,生物柴油的CO排放比普通柴油的CO排放要低,主要是由于燃料中的氧的存在增加了混合气中氧氛围,改善了燃烧过程;燃料中加入水的MB,其CO排放性能介于二者之间,因为水的汽化吸热在一定程度上降低了缸内燃烧温度,使CO排放相对于生物柴油略有上升,但和柴油的CO排放差别不大。在10%负荷工况下,发动机燃用乙醇柴油的CO排放为普通柴油的1.5倍,而在全负荷下,两者大致相当。原因主要有:在低负荷时缸内温度较低,加之乙醇较高的汽化潜热进一步降低了缸内燃烧温度,CO进一步氧化的进程被抑制;而在高负荷下,缸内温度相对较高,乙醇汽化使缸内温度降低的作用弱化且燃料自供的氧又能促进燃料燃烧,因而CO排放下降。

E20在高低负荷下CO排放的显著差异,说明了燃料含氧属性不能被无限放大,此时醇的另外特性(汽化吸热)成为显性要素。生物柴油、MB和普通柴油这三者燃料主体的碳链长度接近,此时CO排放规律可由含氧属性来解释。

3.3HC排放

图5为发动机在标定转速下燃用4种燃料的HC排放。由图可看出,发动机燃用生物柴油和MB时HC排放比柴油降低幅度较大,因为生物柴油是含氧燃料,增加了混合气中的氧氛围,使燃烧更完全;再者生物柴油相对的不易挥发性以及高十六烷值使着火延迟期缩短,混合气形成阶段由于时间尺度缩短而使着火稀限区域减少。与生物柴油相比,发动机燃用MB,因燃料含水降低了缸内温度限制了燃烧,而使HC略有增高。而发动机燃用E20时,在中低负荷下,由于缸内燃烧温度原本较低,具有较高汽化潜热的乙醇进缸后吸热汽化使缸内温度进一步降低,加之乙醇沸腾汽化会形成更多的着火稀限区域,因而HC排放增加,达到普通柴油的1.7倍;而在高负荷下,发动机缸内温度较高,乙醇的汽化吸热造成的缸内温度降低效应变弱,此时HC排放比发动机燃用柴油时还低,与另两种含氧燃料的HC排放相接近。可见,含羟基的短碳链的易挥发性是造成HC排放增多的主要根源。

3.4碳烟

图6为标定功率转速工况下4种燃料的由光吸收系数表示的碳烟排放对比。碳烟的形成主要是由于燃烧室内局部混合气过浓引起的不完全燃烧。由图6可以明显看出各种混合燃料的烟度排放低于柴油的烟度值。生物柴油以及E20为含氧燃料,其氧原子在燃烧过程中可以助燃,因而碳烟排放会大幅度下降。

MB碳烟排放较低的机理在于MB燃烧时混合气均匀度提高,此外混合燃料中含氧,减缓了局部缺氧现象。加之,燃烧过程中形成的C会与水蒸气发生水煤气反应以及OH自由基对活性碳原子的消耗,均会使烟度值降低,其机理见式(1)和式(2)[9-10]。

H2O+CCO+H2,

2Cn+2OHC2n-1+2CO+H2.

在柴油中添加乙醇后,含氧量上升,此外乙醇的沸腾汽化使混合气均匀度提高,促使燃油液滴与空气混合充分,碳烟排放下降,最大负荷工况下降幅达到47%。总体而言,长链酯基结构的燃料消烟效果比短链醇基结构燃料更明显。

4结论

(1)在标定点工况下,与以柴油作为发动机工作的燃料相比较,生物柴油着火时刻约提前2°CA,着火延迟期缩短,放热率峰值和最大爆发压力都略低于柴油;而MB和E20开始放热时刻相对滞后,但放热过程更集中,放热率峰值和最大爆发压力都较发动机燃用柴油时升高。

(2)在大负荷工况下,与柴油相比,发动机燃用3种含氧燃料总体表现为NOx排放增加,而表征不完全燃烧产物的HC、CO和烟度等均有不同程度的下降。生物柴油和柴油的燃料结构相似,其对排放的影响都可以从燃料结构中含氧和十六烷值来解释;加入水的MB使缸内温度略有降低,其排放性能与生物柴油相近;但考虑到E20的汽化吸热和易挥发性,在中低负荷时HC和CO排放明显较高。

(3)含氧的酯类及醇类的加入同时也带来了燃料特性(含氧量、沸点、汽化潜热、粘度和CN值等)等其它方面的改变,对发动机燃烧及排放性能产生很大的影响。因此,需要依据酯或醇的燃料属性,优化添加比例,使现有发动机能够满足相应的排放法规。

参考文献(References)

王忠,袁银南,梅德清,等.生物柴油的排放试验研究[J].内燃机工程,2007,28(1):82-84.

WangZhong,YuanYinnan,MeiDeqing,etal.ExperimentalStudyontheEmissionofBiodieselFuel[J].ChineseInternalCombustionEngineEngineering,2007,28(1):82-84.(inChinese)

KAWANOD,ISHIH,GOTOY,etal.ApplicationofBiodieselFueltoModernDieselEngine[C].SAEPaper,2006-01-0233.

吕兴才,绪斌,黄建平,等.基于放热率分析的乙醇柴油燃烧特性的研究[J].内燃机工程,2007,28(2):24-26.

LüXingcai,XuBin,HuangJianping,etal.HeatReleaseRateandCombustionCharacteristicAnalysisofDieselEngineFuelledwithEthanol-DieselBlendFuel[J].ChineseInternalCombustionEngineEngineering,2007,28(2):24-26.(inChinese)

陈虎,王建昕,帅石金.乙醇-甲酯-柴油含氧燃料对柴油机性能与燃烧特性的影响[J].燃烧科学与技术,2007,13(3):243-247.

ChenHu,WangJianxin,ShuaiShijin.EffectsofEthanol-ester-dieselOxygenFuelonPerformanceandCombustionCharacteristicsofDieselEngine[J].JournalofCombustionScienceandTechnology,2007,13(3):243-247.(inChinese)

葛蕴珊,信建民,吴思进,等.增压柴油机燃用生物柴油的排放特性[J].燃烧科学与技术,2004,10(2):125-129.

GeYunshan,XinJianmin,WuSijin,etal.EmissionCharacteristicsofTurbo-ChargeDieselEnginewithBio-DieselFuel[J].JournalofCombustionScienceandTechnology.2004,(2):125-129.(inChinese)

王忠,袁银南,历宝录,等.生物柴油的排放特性试验研究[J].农业工程学报,2005,21(7):77-80.

WangZhong,YuanYinnan,LiBaolu,etal.Experimentalstudyontheemissioncharacteristicsofbiodieselfuel[J].TransactionsoftheCSAE,2005,21(7):77-80.(inChinese)

ARMASAO,BALLESTEROSR,MARTOSFJ,etal.CharacterizationofLightDutyDieselEnginePollutantEmissionsUsingWater-emulsifiedFuel[J].Fuel,2005(84):1011-1018.

JAMILG,DAMONH,KhaleDAKI.PerformanceEmissionsandHeatReleaseCharacteristicsofDirectInjectionDieselEngineOperatingonDieselOilEmulsion[J].AppliedThermalEngineering,2006,26

(17/18):2132-2141.

黄亚继,仲兆平,金保,等.生物质油/柴油乳化油的稳定性与燃烧试验研究[J].东南大学学报,2010,40(4):794-798.

生物燃料和生物质燃料的区别范文篇11

【关键词】林区秸杆;生态系统;作用;新型环保能源

林区有不少耕地,每年生产大量的秸秆。以往在收割之后,农民都会把秸杆垛起来保存,等到冬天的时候当作饲料喂牲口或是卖给其他人(用来造纸之类的),每个垛可以卖上几十元钱;现在农民种地随着机械化的普及,喂牲口的逐渐减少,生活质量的提高,农民用机械化收割完庄稼之后,为了省事都直接在地里把秸杆焚烧了;秋深时节,浓烟滚滚火光冲天,一片狼藉景象。致使几十平方公里的地域形同战争状态。这样做一方面浪费了资源,另外对大自然的生态环境造成了不可估量的破坏。这种情况,实在令人堪忧。

焚烧秸秆有不少坏处。首先它严重的污染了空气,消耗大量的氧气,进而产生有害废气。特别是那些不完全燃烧的一氧化碳气体,对人畜极为有害。再者林区防火拢烧秸秆,如果控制不好,跑火走烟,火烧连营,将酿成严重后果。有许多山火是由于放荒造成的。在某种意义上可以说,焚烧秸秆是“定时炸弹”,是必须根除的。其次耕地表层的某些宝贵的微生物会被大火烧掉,这对生态的保护是极为不利的,尤其严重浪费了资源.特别是在我们能源相对短缺的情况下,大量焚烧秸秆实在可惜。

其实秸秆本是宝,只是我们没有科学的指导,没有找到好的科学方法.所以建议科技人员从实践科学发展观的高度,科学利用秸秆,将其化废为宝。秸秆最大的好处是可制沼气,而且是不需要多少钱,就能办成的事情。沼气的开民与利用前景相当广阔。特别是在我们能源比较短缺的情况下,民展沼气利国利民。通常可将人畜便放置于沼气池中,经过厌氧发酵处理,就能把低热质的固体燃料,比如像秸秆,就变成高热质的气体燃料。即我们所就的沼气。与些同时,还可以将不能直接燃烧的粪便机制性地转化为可燃气体。那些发酵后残留之物还可以成为有机肥料,培育农田。

据科学调查,如果以秸秆充作燃料,一般一个五口之家每天得需12.6千克,如果将这些秸秆发酵机制成为沼气,每天仅需7.1千克。这样不仅大量节约了秸秆,还可机制成有机质含量很高的肥料,这正是我们农田所需的东西。在实地调研中,我们发现如果将秸秆先是作为饲料给牲畜饲喂,再把牲畜的粪便回填到沼气池中,继续发酵,制成沼气后,那些发酵的残留物作为肥料施地肥田,其效果更好。

那么什么是沼气呢?它主要成分是甲烷。燃烧时能显现微蓝色的火苗,同时释放出大量的热能。其燃烧的反应式为:CH4+O2CO2+H2O,1立方米沼气热量,主要是以沼气中甲烷含量来计算。沼气有个脾气,就是必须在氧气的帮助下,才能充分的燃烧。我们知道,氧气通常在空气中的含量仅为20%左右,所以甲烷与空气的燃烧比例仅为1:10。甲烷在沼气中的含量一般为60%,高的为70%。这样,我们就可得出一份数据,1份沼气一般需要7份空气混合才能充分地燃烧。其实,秸秆可绝非止于玉米秸秆。如稻区的稻壳啊,玉米产区的玉米芯啊,林区的木屑啊,板皮啊。其原料的分布及其广泛,还有不少没被我们所认知东西也可充作秸秆的作用。随着低碳生活的来到,气化原材料的路子是必须要走的,而且是越走越宽广。再者,气化的转换率是比较高的,仅以玉米易燃为例,它的挥发成分比较高,灰分少,特别易燃,是极好的气化理想原材料,大量秸秆的遗弃焚烧和腐烂是很大的浪费。气化的可燃气体多是通过相应管道送给用户的,没有泄露和遗失的机会,所以绝对安全清洁方便和环保。

秸秆气化后,其沼渣还有一个较大的用途。那就是养鱼。调研中我们发现,用沼渣喂鱼,具有这样几种好处:充分改善了鱼的品质,增加了鱼的鲜嫩味道。这样就降低了养鱼成本,提高了经济效益。据了解,我们现在的淡水养鱼,多是饲喂粮食,鱼跟人争食粮食,这是对粮食安全的一个挑战。而选用沼渣喂鱼,好处是多方面的。在调研中,我们发现,一些遗弃的泡沼水面,其至湿地,完全可以用来养鱼养虾,至于饮料就用沼渣。这是低成本,高产出的生产模式。应大力宣传,热情扶持,积极推广。

沼渣是宝物,它的一些好处我们还没有完全认知。比如由于沼渣的有机含量远比我们栽培的平菇的棉籽壳高,其内含有较高的促平菇发育的速效养分,这样可以加快平茹的发育,并且杂菌污染也少。平茹出茹快,生产效益大增,据水库渔业部门的同志介绍,残留的沼渣还可以用来喂鱼,培育蚯蚓等都是不错的饮料,真是一举多得。随着科技的进步,沼渣的用途将更加广泛。仅以一个农业大县为例,每年有8亿千克的玉米秸秆,其中有30%的秸秆被遗弃焚烧或烂掉。如果将秸秆科学处理,其经济的,生态的和社会的价值是相当惊人的。

我国是能源相对短缺的国家,为保证可持续发展,应当引导农民走生态循环发展之路。近十几年来,北方农业技术有显著的经济效益。比如玉米的产量已达惊人水准。昔日,农家常年生火做饭取暖,特别是紧缺的玉米秸秆,如今大量过剩,这绝对是个福音。我们要引导说服农民走发展沼气的路子,以促进生态的良性循环,大大降低生物质的消耗,维护生态平衡。近几年,随着我国科技的进步,还研发了秸秆粉碎机,秸秆成型机,秸杆切断机等多种机器设备。

生物燃料和生物质燃料的区别范文

关键词:空气质量;污染源;相关性;二氧化氮;二氧化硫

中图分类号:X831

文献标识码:A文章编号:16749944(2017)10006303

1引言

大量研究表明,区域环境空气质量与区域污染源具有极强的相关性[1~3]。在特定区域内,环境空气质量污染物在浓度量值、首要污染物天数,以及出现的特定时间段上会呈现特定特征[4]。笔者在系统分析了抚顺市城区高污染燃料的消耗特征、大气污染物治理排放特征以及环境空气质量状况与评价的基础上,采用相关性分析的方法,系统分析了抚顺市城区2014年环境空气质量污染物的浓度量值、首要污染物天数的及月分布,与高污染燃料燃烧污染物排放量之间的关系,为高污染燃料禁燃区科学客观地划分提供必要条件。

2主要污染物的识别与确定

高污染燃料禁燃区划分方案需要明确确定影响区域环境空气质量的主要污染物。中国国家标准《环境空气质量标准》(GB3095-2012)共确定六项污染物[5],分别是SO2、NO2、CO、O3、PM10和PM2.5。这六项污染物在崴吵乔域环境空气质量浓度特征、首要污染物天数以及时间分布上呈现了以下明显特点。

(1)以PM10、PM2.5代表的烟(粉)尘颗粒物和O3,是自2012年全市有系统环境空气质量监测数据以来最主要的三种污染物。2012年二级空气质量以下污染天数为73d,O3占了47d约64%,PM10为26d约36%;2013年二级空气质量以下污染天数为78d,O3占了21d约27%,PM10为30d约38%,PM2.5为27d约35%;距现在最近的2014年,二级空气质量以下污染天数为123d,O3占了41d约33%,PM10为10d约8%,PM2.5达到了71d约58%(图1)。这些数据表明,抚顺市的环境空气污染的主要污染物即为O3和烟(粉)尘颗粒物。

(2)PM10、PM2.5和O3污染物在年度内出现的时间段上,PM10、PM2.5主要出现春、秋和冬季三季,O3污染物主要出现在夏季。

(3)SO2、NO2、CO、O3、PM10和PM2.5六项污染物,特别是PM10、PM2.5和O3污染物在浓度上,年度内呈现规律性分布。SO2、NO2、PM10和PM2.5一直呈凹型抛物线,这表明4种污染物在污染排放源上具有同一性,而O3呈凸型抛物线。研究表明,O3是环境空气的二次污染物,是由于NO2引发,在夏季强紫外光辐射照射下产生了NO、O、NO2、O2和O3各成分间循环的光化学反应。图1也表明,O3的存在与抚顺市的光照时间存在良好的相关性,尽管日照时间仅是NO、O、NO2、O2和O3各成分间转化的一个因素,但是光照时间却和紫外线的辐射强度存在一致性。因此,在污染源对环境空气质量的影响方面,应O3将与NO2归类,分析NO2与污染源排放的关系。

通过上述3个规律的分析可知,PM10、PM2.5代表的烟(粉)尘颗粒物和NO2是首要的污染物因子。而SO2一直以来作为环境空气污染必须分析的污染物,在抚顺市的浓度量值在年度内的分布特征又与PM10、PM2.5具有相同分布特征和同源性,所以也应该把SO2作为污染物因子。因此,抚顺市环境空气污染物因子确定为PM10、PM2.5、NO2和SO2。

3主要污染物与污染源相关性分析

两个变量间的相关性分析是建立两种变量是否有关联的重要方法。

为客观分析污染物排放源强度与环境空气质量间的关系,做如下技术处理。

(1)将全年烟气中的SO2、烟(粉)尘和氮氧化物排放量分为取暖期附加排放量和工业污染源排放背景值两部分,工业污染源各排放总量按12个月平均到每月中,冬季取暖期的排放量按5个月平均,分别再加到1、2、3、11和12月等5个月中。按照此方法,全年分成了取暖期和非取暖期两段,取暖期分别为1、2、3、11和12月共5个月份,非取暖期为4、5、6、7、8、9和10月共7个月份。冬季取暖期的烟气污染物排放量包括取暖锅炉排放源和工业生产使用的高污染燃料源,非取暖期仅为生产使用的高污染燃料源。

(2)将各污染物月排放量进行二次曲线拟合,与对应污染物的月平均浓度或者污染天数进行相关性比较,确定污染物排放是否和环境空气污染因子具有相关性。

3.1烟气SO2的排放量与环境空气SO2浓度间的相关性

烟气SO2的排放量与环境空气SO2浓度间的相关性如图2。

由图2可知,烟气SO2的排放量的拟合线与环境空气SO2月浓度的拟合均是一致的凹抛物线,具有良好的一致性,两者相关性分别达到了0.7180和0.9634。凹抛物线特征进一步说明,两者存在的良好的相关性,环境空气中的SO2的浓度与烟气排放SO2的数量极其相关。SO2的排放量在一年中的1、2和3月及11月、12月高,而环境空气SO2对应月的平均浓度也高,这也是取暖期比非取暖期多燃烧消耗了大量高污染燃料所致[7]。但是根据第五章的环境空气质量分析表明,SO2虽不是首要超标污染物,但是仍有一些天IAQI值超过100,因此仍需作为高污染燃料禁燃区划分的污染标识物之一。

3.2烟气中烟(粉)尘的排放量与环境空气PM10和PM2.5之间的相关性

抚顺市高污染燃料燃烧排放烟(粉)尘的排放量与环境空气PM10和PM2.5之间的相关性如图3,4所示(以抚顺市2014年污染物排放量和环境空气质量为代表)。

由图3可知,烟气烟(粉)尘的排放量与环境空气PM10和PM2.5月均浓度均呈现1~3月份、11~12月份高而中间各月份低的现象,具有良好的一致性,这表明取暖期比非取暖期多燃烧消耗了大量高污染燃料所致[8]。图4表明,每月污染天数的分布特征与烟(粉)尘排放量也呈现良好的相关系,并且燃烧排放的烟(粉)尘造成空气中的PM10和PM2.5超标的污染物,已在2013年开始成为抚顺市的最主要的污染物,2014年两者污染天数之和已达80d,占全年污染天数的65%。PM10和PM2.5的污染应该受到严格的注意和防控。

从三者的拟合线来看(图3),烟(粉)尘的排放量的拟合线与环境空气PM10和PM2.5月均浓度拟合线均是一致的凹抛物线型。虽然PM10和PM2.5的拟合度并不高,但是在9次多项式以内,2次多项式抛物线拟合形式的相关系数仍然最高。凹抛物线的特征也说明了烟(粉)尘的排放量与环境空气PM10和PM2.5月均浓度存在的良好的相关性。这个结论与其他城市的研究结果相同[9]。

PM2.5月首要污染天数间的相关性

造成PM10和PM2.5拟合线相关系数不高的原因,与非取暖期呈现部分高值有关,这是因为非取暖期高污染燃料燃烧排放烟(粉)尘颗粒物数量虽然低于取暖期,但由于烟(粉)尘粒度过细,沉降性不佳,几年累积的结果,一旦空气层结稳定,必然会造成环境空气PM10和PM2.5偏高的现象[6],研究表明,高污染燃料的燃烧,如果治理水平不高,在常规的干法除尘工艺条件下,直径小于2.5μm的PM2.5无法去除,除非采用湿法除尘。这说明了取暖期和非取暖期高污染燃料燃烧排放的烟(粉)尘均是PM10和PM2.5成为环境空气质量污染最主要的污染物。因此全国很多城市均把高污染燃料燃烧排放的烟(粉)尘作为环境空气PM10和PM2.5超标的元凶。

综合上述分析,烟气中烟(粉)尘的排放量与环境空气PM10和PM2.5之间均在良好的相关性,PM10和PM2.5的烟(粉)尘应作为高污染燃料禁燃区划分的最主要的污染标识物之一。

3.3烟气NOx的排放量与环境空气NO2浓度间的相关性

烟气NOx的排放量与环境空气NO2浓度间的相关性如图5。

由图5可知,烟气NOx的月排放量及其拟合线与NO2月浓度变化趋势具有良好的一致性。从两者的拟合线来看,烟气NOx的月排放量与环境空气NO2月平均浓度的拟合线均是一直的凹抛物线,相关系数R2分别为0.7180和0.7294。具有良好的一致性,同前述SO2和烟(粉)尘颗粒物的分析结果一样,凹抛物线特征进一步说明了两者存在的良好相关性,环境空气中的NOx的浓度与烟气排放NO2的数量极其相关[10]。NOx的排放量在一年中的1、2、3、11、12月呈现高值,而环境空气NO2在对应月上的平均浓度也呈现高值,这与取暖期比非取暖期多燃烧消耗了大量高污染燃料有关。

NO2在夏季浓度偏低,还在于夏季转化为O3所致。一般而言,O3与NOx的排放量的关系如图6。

图6表明,由NOx氧化物、O2和紫外线光化学反应产生的O3应该引起重视。5~9月份虽然出现的降水天气对烟(粉)尘颗粒物有良好的清除作用,但是这些月份的强辐射,NOx会引发O3的产生[11]。只有控制了NOx的排放,才能抑制O3的产生,进而改变夏季抚顺市空气O3超标的现象。

因此,NOx作为高污染燃料燃烧的烟气排放的引发的O3污染的引发剂的角度,NO2、NO等NOx也应该作为高污染燃料禁燃区划分的污染标识物。

4结语

PM10、PM2.5代表的烟(粉)尘颗粒物和NO2是首要的污染物因子;烟气SO2的排放量的拟合线与环境空气SO2月浓度的拟合均是一致的凹抛物线,具有良好的一致性,两者相关性分别达到了0.7180和0.9634;烟(粉)尘的排放量的拟合线与环境空气PM10和PM2.5月均浓度拟合线均是一致的凹抛物线型,排放量与环境空气PM10和PM2.5月均浓度存在的良好的相关性;烟气NOx的月排放量及其拟合线与NO2月浓度变化趋势具有良好的一致性,拟合相关系数R2分别为0.7180和0.7294,具有良好的一致性。

参考文献:

[1]

方荔华.西安市能源构成与环境空气质量的相关性研究[D].西安:西安建筑科技大学,2004.

[2]孙雪丽,程水源,陈东升.区域污染对北京市采暖期SO2污染的影响分析[J].安全与环境学报,2006,6(5):83~87.

[3]李小飞,张明军,王圣杰,等.潜中国空气污染指数变化特征及影响因素分析[J].环境科学,2012,33(6):1936~1943.

[4]任婉侠,薛冰,张琳,等.中国特大型城市空气污染指数的时空变化[J].辽宁大学学报(自然科学版),2013,32(10):2788~2796.

[5]中华人民共和国环境保护部.环境空气质量指数(AQI)技术规定(试行)(HJ633-2012)[S].北京;中国标准出版社,2012.

[6]余晔,夏敦胜,陈雷华.兰州市PM10污染变化特征及其成因分析[J].环境科学,31(1):22~28.

[7]卢广平,陈宝智.抚顺市大气环境质量及其对策研究[J].环境科学研究,2005,18(4):109~111.

[8]黄丽坤,王广智,王琨.哈尔滨市采暖与非采暖期大气颗粒物污染特性研究[J].环境工程学报,2011,5(1):146~149.

[9]宋晓焱,邵龙义,宋建军.煤矿区城市PM10单颗粒微观形貌及粒径分布特征[J].中国矿业大学学报,2011,40(2):292~297.