初中一年级数学上册知识点总结优秀(精选2篇)
初一数学上册第一章知识点有哪些 篇1
一、正数和负数
1、以前学过的0以外的数前面加上负号-的数叫做负数。
2、以前学过的0以外的数叫做正数。
3、零既不是正数也不是负数,零是正数与负数的分界。
4、在同一个问题中,分别用正数和负数表示的量具有相反的意义。
二、有理数
1、正整数、0、负整数统称整数,正分数和负分数统称分数。
2、整数和分数统称有理数。
3、把一个数放在一起,就组成一个数的集合,简称数集。
三、数轴
1、规定了原点、正方向、单位长度的直线叫做数轴。
2、数轴的作用:所有的有理数都可以用数轴上的点来表达。
3、注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
4、性质:(1)在数轴上表示的两个数,右边的数总比左边的数大。
(2)正数都大于零,负数都小于零,正数大于负数。
四、相反数
1、只有符号不同的两个数叫做互为相反数。
2、数轴上表示相反数的两个点关于原点对称。
3、零的相反数是零。
五、绝对值
1、一般地,在数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。
2、一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
六、有理数的大小比较
1、正数大于0,0大于负数,正数大于负数。
2、两个负数,绝对值大的反而小。
七、有理数的加法
1、有理数的加法法则
(1)号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
(3)互为相反数的两个数相加得零。
(4)一个数同零相加,仍得这个数。
2、有理数加法的运算律
(1)加法交换律:两个数相加,交换加数的位置,和不变。即a+b=b+a
(2)加法结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。即(a+b)+c=a+(b+c)
八、有理数的减法
1、有理数减法法则
减去一个数, www、 等于加这个数的相反数。即a-b=a+(-b)
九、有理数的乘法
1、有理数的乘法法则
(1)两数相乘,同号得正,异号得负,并把绝对值相乘。
(2)任何数同0相乘,都得0。
(3)乘积是1的两个数互为倒数。
(4)几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
(5)几个数相乘,有一个因数为零,积就为零。
2、有理数的乘法的运算律
(1)乘法交换律:两个数相乘,交换因数的位置,积相等。即ab=ba
(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即(ab)c=a(bc)
(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。即a(b+c)=ab+ac
十、有理数的除法
1、有理数除法法则
(1)除以一个不等于0的数,等于乘这个数的倒数。
(2)零不能作除数。
(3)两数相除,同号得正,异号得负,并把绝对值相除。
(4)0除以任何一个不等于0的数,都得0。
十一、有理数的乘方
1、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
2、负数的奇次幂是负数,负数的偶次幂是正数。
3、正数的任何次幂都是正数,0的任何正整数次幂都是0。
十二、有理数混合运算的运算顺序
1、先算乘方,再算乘除,最后算加减;
2、同极运算,从左到右进行;
3、有括号,先做括号内的运算,按小括号、中括号、大括号依次进行
十三、科学记数法
1、把一个大于10的数表示成a10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
2、用科学记数法表示一个n位整数,其中10的指数是n-1。
十四、近似数和有效数字
1、接近实际数目,但与实际数目还有差别的数叫做近似数。
2、精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。
3、从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。
4、对于用科学记数法表示的数a10n,规定它的有效数字就是a中的有效数字。
以上内容就是差异网为您提供的3篇《初中一年级数学上册知识点总结》,您可以复制其中的精彩段落、语句,也可以下载DOC格式的文档以便编辑使用。
七年级数学代数初步知识知识点 篇2
第二章整式的加减
2、1整式
1、单项式:由数字和字母乘积组成的式子。系数,单项式的次数。单项式指的是数或字母的积的代数式。单独一个数或一个字母也是单项式。因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。
2、单项式的系数:是指单项式中的数字因数;
3、单项数的次数:是指单项式中所有字母的指数的和。
4、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式。特别注意多项式的项包括它前面的性质符号。
5、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。
6、单项式和多项式统称为整式。
2、2整式的加减
1、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。
2、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可。同类项与系数大小、字母的排列顺序无关
3、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。
4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;
5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。
6、整式加减的一般步骤:
一去、二找、三合
(1)如果遇到括号按去括号法则先去括号。(2)结合同类项。(3)合并同类项葫芦岛